Tumoral Accumulation of Long-Circulating, Self-Assembled Nanoparticles and Its Visualization by Gamma Scintigraphy

  • Cho, Yong-Woo (Department of Chemical Engineering, Hanyang University) ;
  • Kim, Yoo-Shin (Advanced Medical Technology Cluster for Diagnosis and Prediction, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University) ;
  • Kim, In-San (Advanced Medical Technology Cluster for Diagnosis and Prediction, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University) ;
  • Park, Rang-Woon (Advanced Medical Technology Cluster for Diagnosis and Prediction, Department of Biochemistry and Cell Biology, School of Medicine, Kyungpook National University) ;
  • Oh, Seung-Jun (Asan Medical Center, University of Ulsan College of Medicine) ;
  • Moon, Dae-Hyuk (Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kim, Sang-Yoon (Asan Medical Center, University of Ulsan College of Medicine) ;
  • Kwon, Ick-Chan (Biomedical Research Center, Korea Institute of Science and Technology)
  • Published : 2008.01.31

Abstract

The enhanced permeability and retention (EPR) effect is used extensively for the passive targeting of many macromolecular drugs for tumors. Indeed, the EPR concept has been a gold standard in polymeric anticancer drug delivery systems. This study investigated the tumoral distribution of self-assembled nanoparticles based on the EPR effect using fluorescein and radio-labeled nanoparticles. Self-assembled nanoparticles were prepared from amphiphilic chitosan derivatives, and their tissue distribution was examined in tumor-bearing mice. The size of the nanoparticles was controlled to be 330 run, which is a size suited for opening between the defective endothelial cells in tumors. The long-circulating polymer nanoparticles were allowed to gradually accumulate in the tumors for 11 days. The amount of nanoparticles accumulated in the tumors was remarkably augmented from 3.4%ID/g tissue at 1 day to 25.9%ID/g tissue at 11 days after i.v. administration. The self-assembled nanoparticles were sustained at a high level throughout the 14 day experimental period, indicating their long systemic retention in the blood circulation. The ${\gamma}$-images provided clear evidence of selective tumor localization of the $^{131}I$-labeled nanoparticles. Confocal microscopy revealed the fluorescein-labeled nanoparticles to be preferentially localized in the perivascular regions, suggesting their extravasation to the tumors through the hyperpermeable angiogenic tumor vasculature. This highly selective tumoral accumulation of nanoparticles was attributed to the leakiness of the blood vessels in the tumors and their long residence time in the blood circulation.

Keywords

References

  1. Y. Matsumura and H. Maeda, Cancer Res., 46, 6387 (1986).
  2. H. Maeda, Adv. Drug Deliver. Rev., 6, 181 (1991). https://doi.org/10.1016/0169-409X(91)90040-J
  3. H. Maeda, L. W. Seymour, and Y. Miyamoto, Bioconjugate Chem., 3, 351 (1992). https://doi.org/10.1021/bc00017a001
  4. R. Satchi-Fainaro, M. Puder, J. W. Davies, H. T. Tran, D. A. Sampson, A. K. Greene, G. Corfas, and J. Folkman, Nature Med., 10, 255 (2004). https://doi.org/10.1038/nm1002
  5. P. J. Julyan, L. W. Seymour, D. R. Ferry, S. Daryani, C. M. Boivin, J. Doran, M. David, D. Anderson, C. Christodoulou, A. M. Young, S. Hesselwood, and D. J. Kerr, J. Control. Release, 57, 281 (1999). https://doi.org/10.1016/S0168-3659(98)00124-2
  6. P. A. Vasey, S. B. Kaye, R. Morrison, C. Twelves, P. Wilson, R. Duncan, A. H. Thomson, L. S. Murray, T. E. Hilditch, T. Murray, S. Burtles, D. Fraier, E. Frigerio, and J. Cassidy, Clin. Cancer Res., 5, 83 (1999).
  7. C. Li, D. F. Yu, R. A. Newman, F. Cabral, L. C. Stephens, N. Hunter, L. Milas, and S. Wallace, Cancer Res., 58, 2404 (1998).
  8. H. Maeda, J. Fang, T. Inutsuka, and Y. Kitamoto, Int. Immunopharmacol., 3, 319 (2003). https://doi.org/10.1016/S1567-5769(02)00271-0
  9. K. Kim, J.-H. Kim, S. Kim, H. Chung, K. Choi, I. C. Kwon, J. H. Park, Y.-S. Kim, R.-W. Park, I.-S. Kim, and S. Y. Jeong, Macromol. Res., 13, 167 (2005). https://doi.org/10.1007/BF03219048
  10. G. M. Barratt, Pharm. Sci. Technol. Today, 3, 163 (2000). https://doi.org/10.1016/S1461-5347(00)00255-8
  11. S. M. Moghimi, A. C. Hunter, and J. C. Murray, Pharmacol. Rev., 53, 283 (2001).
  12. R. Duncan, Nat. Rev. Drug Discov., 2, 347 (2003). https://doi.org/10.1038/nrd1088
  13. L. Brannon-Peppas and J. O. Blanchette, Adv. Drug Deliver. Rev., 56, 1649 (2004). https://doi.org/10.1016/j.addr.2004.02.014
  14. J. H. Park, S. Kwon, M. Lee, H. Chung, J. H. Kim, Y. S. Kim, R. W. Park, I. S. Kim, S. B. Seo, I. C. Kwon, and S. Y. Jeong, Biomaterials, 27, 119 (2006). https://doi.org/10.1016/j.biomaterials.2005.05.028
  15. G. Kaul and M. Amiji, J. Drug Target., 12, 585 (2004). https://doi.org/10.1080/10611860400013451
  16. Y. J. Son, J.-S. Jang, Y. W. Cho, H. Chung, R.-W. Park, I. C. Kwon, I.-S. Kim, J.-Y. Park, S. B. Seo, C. R. Park, and S. Y. Jeong, J. Control. Release, 91, 135 (2003). https://doi.org/10.1016/S0168-3659(03)00231-1
  17. F. Yuan, M. Dellian, D. Fukumura, M. Leunig, D. A. Berk, V. P. Torchilin, and R. K. Jain, Cancer Res., 55, 3752 (1995).
  18. S. K. Hobbs, W. L. Monsky, F. Yuan, W. G. Roberts, L. Griffith, V. P. Torchilin, and R. K. Jain, Proc. Natl. Acad. Sci. USA, 95, 4607 (1998).
  19. H. Hashizume, P. Baluk, S. Morikawa, J. W. McLean, G. Thurston, S. Roberge, R. K. Jain, and D. M. McDonald, Am. J. Pathol., 156, 1363 (2000). https://doi.org/10.1016/S0002-9440(10)65006-7
  20. W. L. Monskey, D. Fukumura, T. Gohongi, M. Ancukiewcz, H. A. Weich, V. P. Torchillin, F. Yuan, and R. K. Jain, Cancer Res., 59, 4129 (1999).
  21. D. M. McDonald and P. Baluk, Cancer Res., 62, 5381 (2002).
  22. M. Lee, Y. W. Cho, J. H. Park, H. Chung, S. Y. Jeong, K. Choi, D. H. Moon, S. Y. Kim, I.-S. Kim, and I. C. Kwon, Colloid Polym. Sci., 284, 506 (2006). https://doi.org/10.1007/s00396-005-1413-3
  23. Y. W. Cho, S. A. Park, T. H. Han, D. H. Son, J. S. Park, S. J. Oh, D. H. Moon, K.-J. Cho, C.-H. Ahn, Y. Byun, I.-S. Kim, I. C. Kwon, and S. Y. Kim, Biomaterials, 28, 1236 (2007). https://doi.org/10.1016/j.biomaterials.2006.10.002
  24. K. Manotham, T. Tanaka, M. Matsumoto, T. Ohse, T. Miyata, R. Inagi, K. Kurokawa, T. Fujita, and M. Nangaku, J. Am. Soc. Nephrol., 15, 1277 (2004). https://doi.org/10.1097/01.ASN.0000125614.35046.10
  25. L.-M. Ching, S. Zwain, and B. C. Baguley, Br. J. Cancer, 90, 906 (2004). https://doi.org/10.1038/sj.bjc.6601606
  26. K. J. Williams, B. A. Tefler, S. Brave, J. Kendrew, L. Whittaker, I. J. Stratford, and S. R. Wedge, Clin. Cancer Res., 10, 8587 (2004). https://doi.org/10.1158/1078-0432.CCR-04-1147
  27. F. Braet, R. Dezanger, M. Baekeland, E. Crabbe, P. van der Smissen, and E. Wisse, Hepatology, 21, 180 (1995).
  28. R. L. Juliano, Adv. Drug Deliver. Rev., 2, 31 (1988). https://doi.org/10.1016/0169-409X(88)90004-X
  29. F. Yuan, M. Leunig, S. K. Huang, D. A. Berk, D. Papahadjopoulos, and R. K. Jain, Cancer Res., 54, 3352 (1994).
  30. M. Yokoyama, T. Okano, Y. Sakurai, H. Ekimoto, C. Shibazaki, and K. Kataoka, Cancer Res., 51, 3229 (1991).
  31. N. Nishiyama, S. Okazaki, H. Cabral, M. Miyamoto, Y. Kato, Y. Sugiyama, K. Nishio, Y. Matsumura, and K. Kataoka, Cancer Res., 63, 8977 (2003).