References
- T. Kailath, A. Sayed, and B. Hassibi, Linear Estimation, Prentice-Hall, Englewood, Cliffs, NJ, 1999
-
K. M. Nagpal and P. P. Khargonekar, "Filtering and smoothing in an
$H_{\infty}$ setting," IEEE Trans. on Automatic Control, vol. 36, pp. 152-166, 1991 https://doi.org/10.1109/9.67291 -
E. Fridman, U. Shaked, and L. H. Xie, "Robust
$H_{\infty}$ filtering of linear systems with time-varying delay," IEEE Trans. on Automatic Control, vol. 48, no. 1, pp. 159-165, 2003 https://doi.org/10.1109/TAC.2002.806674 -
U. Shaked, "
$H_{\infty}$ optimal estimation-old and new result," Proc. of the 21st Brazilian Automatic Control Conference, Uberlandia, MG, Brasil, September 1998 -
P. Colaneri and A. Ferrante, "A J-spectral factorization approach for
$H_{\infty}$ estimation problem in discrete time," IEEE Trans. on Automatic Control, vol. 47, no. 12, pp. 2108-2113, 2002 https://doi.org/10.1109/TAC.2002.805666 -
P. Colaneri and A. Ferrante, "Algebraic riccati equation and J-spectral factorization for
$H_{\infty}$ estimation," System & Control Letters, vol. 51, no. 5, pp. 383-393, 2004 https://doi.org/10.1016/j.sysconle.2003.09.008 -
P. Colaneri and A. Ferrante, "Algebraic riccati equation and J-spectral factorization for
$H_{\infty}$ filtering and deconvolution," SIAM J. Contr. and Opt., vol. 45, no. 1, pp. 123-145, 2006 https://doi.org/10.1137/S0363012903434741 -
H. Gao and C. Wang, "A delay-dependent approach to robust
$H_{\infty}$ filtering for uncertain discretetime state-delayed systems," IEEE Trans. on Signal Processing, vol. 52, no. 6, pp. 1631-1640, 2004 https://doi.org/10.1109/TSP.2004.827188 -
L. Mirkin and G. Tadmor, "Yet another
$H_{\infty}$ disctetization," IEEE Trans. on Automatic Control, vol. 38, pp. 891-894, 2003 - G. Zames, "Feedback and optimal sensitivity: Model reference transformations, multiplicative seminorms, and approximate," IEEE Trans. on Automatic Control, vol. 26, pp. 301-320, 1981 https://doi.org/10.1109/TAC.1981.1102603
-
B. Hassibi, A. H. Sayed, and T. Kailath, Indefinite Quadratic Estimation and Control: A Unified Approach to H2 and
$H_{\infty}$ Theories, SIAM Studies in Applied Mathematics Series, 1998 -
Y. Theodor and U. Shaked, "Game theory approach to
$H_{\infty}$ optimal discrete-time fixed-point and fixed-lag smoothing," IEEE Trans. on Automatic Control, vol. 39, pp. 1944-1948, 1994 https://doi.org/10.1109/9.317131 -
H. Zhang, L. Xie, Y. C. Soh, and D. Zhang, "
$H_{\infty}$ fixed-lag smoothing for linear time-varying discrete time systems," Automatica, vol. 41, no. 5, pp. 839-846, 2005 https://doi.org/10.1016/j.automatica.2004.11.028 - H. Zhang, L. Xie, D. Zhang, and Y. C. Soh, "A reorganized innovation approach to linear estimation," IEEE Trans. on Automatic Control, vol. 49, no. 10, pp. 1810-1814, 2004 https://doi.org/10.1109/TAC.2004.835599