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Cap Pricings under the Fractional Brownian Motion'

Joonhee Rhee?), Yoon Tae Kim?

Abstract

We present formulas for two types of cap pricing under fBm-HJM model
reflecting the empirical long range dependence in the interest rate model. In

particular, we propose a new approach to pricing the cap with the default
risk.
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1. Introduction

This paper studies the cap pricing reflecting the long range dependence in the interest
rate model. Recently, empirical researches on interest rate dynamics such as Cajueiro and
Tabak (2007) imply that short rates show some long memories and non-Markovian. It
is well-known that fractional Brownian motion(fBm) is a proper candidate for modelling
these empirical phenomena. Since fBm, however, is not a semimartingale process, it is
difficult to apply such a process to asset price modelling. Oksendal (2004), however,
overcomes those difficulties by using Wick integral introduced by Bender (2003) and
Duncan et al. (2000). We give a brief review fBm -HJM interest rate theory, and obtain
two types of closed form solutions of the cap prices by using the Wick integral.

2. No Arbitrage in fBm Model

We denote by (BF) the one parameter fractional Brownian motion(fBm) with Hurst
parameter H € (0,1), i.e., fBm is the Gaussian process Bf! = Bu(t,w), t € R, w € Q,
satisfying A

B = E[BF]=0
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for all t and )
BIBE B = 5 [Is*" + 1t~ 1s - "],

where the expectation is taken under the probability measure P and (2, F) is a measur-
able space.

In order to apply fBm to interest rate model, we need a new type of stochastic
calculus. Note that fBm is not a semimartingale except that H = 1/2. So we cannot
use the theory of stochastic calculus for semimartingale on Bf. In view of the theory of
Wick-Ito integral studied by Oksendal (2004), this integral is defined by

N-1

T T
| otwia = [ ow)sBl = tim 3 d(ts) o (Bu, ~ Bu)
Q 0 k=0

A
where ¢ denotes the Wick product. We will refer to it as the Skorohod stochastic integral
or Wick-Ito integral of the process ¢. Note that this integral compared with the ordinary
integral (pathwise or forward integral) uses the Wick product instead of usual product.
Then, we have

E

- )

T
/ é(t,w)6BY
0

if the integral belongs to L?(P). Following the method of Oksendal (2004), we re-define
no arbitrage in fBm setting.

Definition 2.1 (a) The total wealth process VO(t) corresponding to a portfolio 6(t) in
the Wick-Skorohod model is defined by

Ve(t) = 8(t) o S(¢),
where S(t) can be any asset. (b) A portfolio 0(t) is called Wick-Skorohod self-financing
if

sVO(t) = ()8 S(t).

Definition 2.2 For t € [0,T], a Wick-Skorohod admissible portfolio 6(t) is called a

strong arbitrage if the corresponding total wealth process VO(t) satisfies

Vv9(0) = 0,
ViT) >0, as
PIVY(T)>0] > 0.

Then we can derive the bond pricing under the strong arbitrage framework.
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3. HJIM Representation by fBm

In this section, we consider the single factor HIM under the Wick derivative. Define
a pure discount bond price as

P(t,T) = exp <—/t f(t,s)ds) .

The forward rate, then, is given by

f@,7) =f(O,T)+/ta(s,T)ds+/ta(s,T)dBf.
6] 0

By using the definition of the pure discount bond and Fiibini thoerem, we get

P(t,T) =exp (— /tT £(0,s)ds — /Ot /tT (s, u)duds — /Ot /tT ols, u)dudBf) .

Let us set Z(t,T) = B~'(¢)P(t,T), where B (t) is the money market account. By
applying [t6 lemma, for fBm, we have

d;((zf)) = — (& (t,T)dt + o' (1, T)¢' (t, T)dt + o’ (¢, T)dB!") ,
where
o(s,u) = H(2H ~ 1) |s —u*"71,
T T
o'(t,T) =/t a(t, u)du, a'(t,T):/t o(t,u)du
and

4
&(6,T) = / 6(t, )’ (u, T)du.
0
To make the discounted bond price driftless, we set
dBf = ~.dt + dB/1(Q),

where
Yo =—0'(t, T) o/ (t,T) — ¢'(t,T),

and (Bf(Q),t € R) is the Q-fBm defining an equivalent martingale measure such that

¢ 1
¢ = exp ( / 7dBf — > m;) . (3.1)
0

The following theorem is the part of Theorem 3 of Rhee (2007), which shows the drift
condition for fBm HIM.
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Theorem 3.1 The drift condition of HIM in fBm setup is given by

at,T)= - (a(t,T)gb'(t, T)+ 0’(t,T)%@§) —o(t, T)v

To price interest rate derivatives, we need the measure change from the risk neutral
measure to so called the forward measure. In this case, Rhee (2007) also shows that the
Radon-Nikodym derivative is given by

e = exp (— /0 /(5. TYAB (Q) - % |a'|j> , (3.2)

2 T T
Yl = A Y512 B(s, t)dsdt.
0

We will price the forward cap using the HIM model in the next section.

where

3.1. Cap Pricing without Default Risk

We begin with the interest rate model under the measure Q. In the HJIM setting, the
price of a pure discount bond is given by

P(t,T) = P(0,T)
¢ ¢ ¢
X exp ( / rods + / o' (s, T)¢/ (s, T)ds — / o'(s,T)dB" (Q)), (3.3)
0 0 0
where BH(Q) = (BH(Q))s>0 a2 @-fBm and r; is the spot rate. The price dynamics of all

securities considered are assumed to be described by a cadlag adapted process. Denote
the spot LIBOR rate by

o 1 1
L(Tj-1) = L(Tj-1, Ti-1) = 5 (W - 1) :
=1 +7

The caplet price at time ¢ is given by
caplet, = P(t, Tj)ET [(L(Tj-1) — k)" 6| F].

Then the price at time ¢ of a forward cap, denoted by FC;, becomes

FC, = S P, Ty ) B [(L(Ty-) — K61,

Jj=1

Now we introduce the definition and lemma, in order to derive the formula for the fBm
cap pricing.
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Definition 3.1 Let f:R — R measurable. Then f € LY, if

1= [ [ 1)1 @6(s,asit < .
rRJR
The following lemma is given in Oksendal (2004).

Lemma 8.1 Let f € L] and M(t) = fot f(s,w)dBE. Then M(t) is a quasi-marting-
ale.

Finally we prove the main result in this section.

Theorem 3.2 Assume that term structure of interest rate follows fBm type HIM as
(3.8). Suppose that the forward cap starting at time Ty is settled in arrears at dates 15,
J=1L12,...,n. Then the price at time t < Ty of forward cap is given by

n —Ina) — p; a?
FCt = ZP(tyTj—l) P (———~——0‘_7 MJ) — a; exp (/.Lj + é)
=1 ¢

<® —Ina} — p; —o?
gj '

t
1 = BT (X, | F) = / (0'(5,Ty—1) — o'(s, T,))dBH (@Qr, ),

° i 2 2
0']2 2 Varli-1 [Xj——1|~7:t] = IfX[O,ijl]\¢ - IfX{O't]I(ﬁ’
dj = §'P(0,T;)P(0,T;_1)~"

where

Ty
X exp {/0 (o'(s, Tj)¢' (5, T;) — UI(S,Tj_1)¢I(S,Tj_1))d$}

Tj-1
xexp{—/ (0'(s, Tj-1) ‘UI(SaTj))U/(SvTj—l)dS}y
0
and ®(-) is the cumulative standard Normal.

Proof: First we rearrange the caplet price as follows :
caplet, = P(t, T;)EV[(L(Tj-1) — k)* 8| F)
= P(t,1;-1)E"*[(1 = §' P(Tj-1,T))) | 7]

Tj—1
(1 — &§'P(0,T;) exp {/ rsds
0

Tim ! / . Fim / . H T
+/O o'(s,T)¢ (s,Tj)ds—/0 o'(s,T;)dB; (Q)}) lftJ

= P(t,Tj_l)ETj’l[(l —a; exp(Xj_l))ﬂ]:t],

P(t,T; 1)ETi—
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where
8 =14k,
a; = §'P(0,T)P(0,Tj—1)""
x exp { / G T 0 Ty) — o (5, Ty )8 s, T,._1>>ds}
and

T 4
X, = / (o' (5, Ty—1) — o' (5,T5))dBH (Q).

To evaluate the expectation under the measure T;_1, we change BY(Q) into BX (Qr;_,)
by using the equation (3.2). Then caplet; can be represented as

caplet; = P(t,Tj_1)ETi—*[(1 - a;- exp(X;-1))"|F,

where

Xj-1 =/ (0'(s,Tj-1) — o'(s, T}))dB{ (Q1,_,)
0
and

a; = §P(0,T;)P(0,T;-1) "

T4
X exp {/0 (o'(s,T;)8' (5, T3) — 0’(8,Tj—1)¢’(8,1}—1))d3}

Tjhl
X exp { - [T - a'(s,Tma'(s,Tj_l)ds} .
0
The price at time t of a forward cap, denoted by FC4, is given by

FC, =Y P(t,T;-)ET{(1 - af exp(X;-1))*|F].

=1

Lemma 3.1 and change of variables give the result. O

4. Cap Pricing with Default Risk

In real world, interest rate derivatives such as caps and swaps have the default risk.
In this section, we focus on the cap pricing with counterpart default risk. Formally, we
fix a probability space (€, F,P). The default time 7 is assumed to be an F;-stopping
time. Hence define the default process by

H(t) = 1{1—5t} s
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which is Fi-adapted. Obviously, H is a uniformly integrable submartingale. By the
Doob-Meyer decomposition, there exists a unique F;-predictable increasing process A(t)
such that M(¢) = H(t) — A(t) is a martingale. We give more restrictive assumptions.

(A1) There exist a strict sub-filtration (G:) C (F:) and a G;-adapted process A such that
A(t) = A(t/\ 7') and ft = Q’t Y Ht,

where H, = o (H(s)|s <t} and G, V H; represents for the smallest o—algebra
containing G; and H;.

(A2) We define the positive G,-adapted hazard process I by
exp (—=['(t)) = P(r > t|Gy).

(A3) B isa (Q,G;) fBm.

We give the following lemma which is very useful for asset pricing with default risk
(see Duffie and Lando, 2001).

Lemma 4.1 Lett € R and Y a random variable. Then
E [1{T>t}Yl]:t] = l{r>t) exp @) E [1{r>t}Y|gt] :

With this background, we price the cap with the default risk. The caplet price at
time t with the default risk is given by

caplety = P(t,T;)ET5 [(L(Tj-1) — k) Y01 rnmy3 | Fil.-

Note that since the default indicator function is inside the expectation, the ordinary
forward measure does not work. We give a fundamental theorem for pricing the interest
rate derivatives with default risk, defining a new type of forward measure.

Theorem 4.1 Denote the money market account and the pure discount bond with the

default risk as
T
exp <—/ rd(s)ds) | F
t

B(t) = exp (/Ot rd(s)ds) and P(t,T) = E%

respectively. Here
ra(s) = r(s) + A(s),

A is the default risk premium, and the hazard rate process is represented by

T(t) = /0 A(s)ds,
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i.e., the default stopping time is totally inaccessible. Then
caplett = P(t, Tj)ETj [(L(Tj_l) - k)+61{‘r>Tj}l]:t]
= 1>y P(t, TET [(L(Ty-1) — k) 316,

and the density process is given by

déTj . t~/ H 1 ~112
o = o (- [ #6180 (@) - 575

¢ 1
<ep (- [ o/ )aBE@ - 5 1075)
0
where @' (t,T;) is the defaultable bond price volatility with maturity T;.

In this case, the price at time ¢ of a forward cap with the default risk, denoted by
FC, , is represented by

FC, = P(t,Tj_1)E9%~ [(L(T;-1) — k)*4|Gd).
J=1
Proof: By the lemma 4.1, we obtain

caplet; = P(t, T E™ [(L(Tj-1) ~ k) *61ir>13) | Fi]

= E° |exp (" /tTj T(s)d5> (L(Tj-1) — k)+61{T>Tj}l]:tJ

T
= 1{T>t}EQ I:exp (—/ (r(s) + A(s)) ds) (L(T5-1) — Ic)+5|gt] .
t
We define a new measure, being called “Default Risk Forward Measure”, as

iGr, B, TBO,T) o (= fy ra(s)ds)
Qr, B(1y) - Pom)

Then we have

Lrsp B9

exp (— JRCCE: A(s))ds) (L(Tj-1) - k)*élgt}

= Loy P, T E9™ [(L(Ty-1) — k) H6IGH,

which implies

d~ ) i
2 ey (- [ o148 @ - 5 )

X eXp <— /Ot a'(s,T;)dBE(Q) - % |o’|i) .

This ends the proof. O
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5. Conclusion

This short paper demonstrates the fBm cap price with the default risk under the
HJM framework, and also without the default risk. In particular, we propose a new fun-
damental approach to pricing the cap with the default risk. The Ito integral is replaced
by Wick Integral for maintaining no arbitrage, which is a crucial tool for asset pricing.
Our result shows that the adoption of the Wick Integral for fBm-type cap pricings pro-
vides a similar framework as the Ité integral with respect to the Brownian motion or
Levy process.
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