DOI QR코드

DOI QR Code

Possible Roles of Antarctic Krill Proteases for Skin Regeneration

  • Published : 2008.12.30

Abstract

Antarctic krill has a strong proteolytic enzyme system, which comes from a combination of several proteases. This powerful activity can be easily detected by krill's superior post mortem autolysis. Mammalian skin consists of epidermis and dermal connective tissue, and functions as a barrier against threatening environments. A clot in a wound site of the skin should be removed for successful skin regeneration. Epithelial cells secrete proteases to dissolve the clot. In previous studies Antarctic krill proteases were purified and characterized. The proteolytic enzymes from Antarctic krill showed higher activity than mammalian enzymes. It has been suggested that these krill clean up the necrotic skin wound to induce a natural healing ability. The enzymes exhibited additional possibilities for several other biomedical applications, including dental plaque controlling agent and healing agent for corneal alkali burn. Considering that these versatile activities come from a mixture of several enzymes, discovering other proteolytic enzymes could be another feasible way to enhance the activity if they can be used together with krill enzymes. Molecular cloning of the krill proteases should be carried out to study and develop the applications. This review introduces possible roles of the unique Antarctic krill proteases, with basic information and suggestion for the development of an application to skin regeneration.

Keywords

References

  1. Anheller, J.E., L. Hellgren, B. Karlstam, and J. Vincent. 1989. Biochemical and biological profile of a new enzyme preparation from Antarctic krill (E. superba) suitable for debridement of ulcerative lesions. Arch. Dermato. Res. 281(2), 105-110 https://doi.org/10.1007/BF00426587
  2. Benjamin, D.C., S. Kristjansdottir, and A. Gudmundsdottir. 2001. Increasing the thermal stability of euphauserase. A cold-active and multifunctional serine protease from Antarctic krill. Eur. J. Biochem., 268(1), 127-131 https://doi.org/10.1046/j.1432-1327.2001.01857.x
  3. Berg, C.H., S. Kalfas, M. Malmsten, and T. Arnebrant. 2001. Proteolytic degradation of oral biofilms in vitro and in vivo: potential of proteases originating from Euphausia superba for plaque control. Eur. J. Oral Sc., 109(5), 316-324 https://doi.org/10.1034/j.1600-0722.2001.00099.x
  4. Bunea, R., K. El Farrah, and L. Deutsch. 2004. Evaluation of the effects of Neptune Krill Oil on the clinical course of hyperlipidemia. Altern. Med. Rev., 9(4), 420-428
  5. Clarke, A. and P.A. Tyler. 2008. Adult antarctic krill feeding at abyssal depths. Curr. Biol., 18(4), 282-285 https://doi.org/10.1016/j.cub.2008.01.059
  6. Compton, C.C., J.M. Gill, D.A. Bradford, S. Regauer, G.G. Gallico, and N.E. O'Connor. 1989. Skin regenerated from cultured epithelial autografts on full-thickness burn wounds from 6 days to 5 years after grafting. A light, electron microscopic and immunohistochemical study. Lab Invest., 60(5), 600-612
  7. Denner, E.B., B. Mark, H .J. Busse, M. Turkiew icz, and W. Lubitz. 2001. Psychrobacter proteolyticus sp. nov., a psychrotrophic, halotolerant bacterium isolated from the Antarctic krill Euphausia superba Dana, excreting a coldadapted metalloprotease. Syst. Appl. Microbiol., 24(1), 44-53 https://doi.org/10.1078/0723-2020-00006
  8. Ellingsen, T.E. and V. Mohr. 1987. Biochemistry of the autolytic processes in Antarctic krill post mortem. Autoproteolysis. Biochem. J., 246(2), 295-305 https://doi.org/10.1042/bj2460295
  9. Fedotova, N.I., V.S. Baranov, S.K. Mikhailov, and I.M. Skurikhin. 1977. Changes in the amino acid makeup of "Ocean" krill paste from the methods of its culinary preparation. Vopr. Pitan., no.3. 84-88
  10. Fisher, C., S. Gilbertson-Beadling, E.A. Powers, G. Petzold, R. Poorman, and M.A. Mitchell. 1994. Interstitial collagenase is required for angiogenesis in vitro. Dev. Biol., 162(2), 499-510 https://doi.org/10.1006/dbio.1994.1104
  11. Grinnell, F., C.H. Ho, and A. Wysocki. 1992. Degradation of fibronectin and vitronectin in chronic wound fluid: analysis by cell blotting, immunoblotting, and cell adhesion assays. J. Invest. Dermatol., 98(4), 410-416 https://doi.org/10.1111/1523-1747.ep12499839
  12. Grondahl-Hansen, J., L.R. Lund, E. Ralfkiaer, V. Ottevanger, and K. Dano. 1988. Urokinase- and tissue-type plasminogen activators in keratinocytes during wound reepithelialization in vivo. J. Invest. Dermatol., 90(6), 790-795 https://doi.org/10.1111/1523-1747.ep12461511
  13. Grynbaum, M.D., P. Hentschel, K. Putzbach, J. Rehbein, M. Krucker, G. Nicholson, and K. Albert. 2005. Unambiguous detection of astaxanthin and astaxanthin fatty acid esters in krill (Euphausia superba Dana). J. Sep. Sci., 28(14), 1685-1693 https://doi.org/10.1002/jssc.200500152
  14. Gudmundsdottir, A. 2002. Cold-adapted and mesophilic brachyurins. Biol. Chem., 383(7-8), 1125-1131 https://doi.org/10.1515/BC.2002.122
  15. Hellgren, L., V. Mohr, and J. Vincent. 1986. Proteases of Antarctic krill--a new system for effective enzymatic debridement of necrotic ulcerations. Experientia, 42(4), 403-404 https://doi.org/10.1007/BF02118628
  16. Karlstam, B., J. Vincent, B. Johansson, and C. Bryno. 1991. A simple purification method of squeezed krill for obtaining high levels of hydrolytic enzymes. Prep. Biochem., 21(4), 237-256 https://doi.org/10.1080/10826069108018576
  17. Kidd, P.M. 2007. Omega-3 DHA and EPA for cognition, behavior, and mood: clinical findings and structural-functional synergies with cell membrane phospholipids. Altern. Med. Rev., 12(3), 207-227
  18. Konagaya, S. 1980. Protease activity and autolysis of Antarctic krill. Nippon Suisan Gakk., 46, 175-183 https://doi.org/10.2331/suisan.46.175
  19. Kunachowicz, H., E. Czarnowska-Misztal, W. Klys, M. Wicinska, and M. Jania. 1978. Assessment of nutritional value of semi-processed products of krill. II. Nutritional value of proteins. Roc.z Panstw. Zakl. Hig., 29(6), 585-592
  20. Martin, P. 1997. Wound healing--aiming for perfect skin regeneration. Science, 276(5309), 75-81 https://doi.org/10.1126/science.276.5309.75
  21. Mekkes, J.R., I.C. Le Poole, P.K. Das, A. Kammeyer, and W. Westerhof. 1997. In vitro tissue-digesting properties of krill enzymes compared with fibrinolysin/DNAse, papain and placebo. Int. J. Biochem. Cell Biol., 29(4), 703-706 https://doi.org/10.1016/S1357-2725(96)00168-9
  22. Mekkes, J.R., I.C. Le Poole, P.K. Das, J.D. Bos, and W. Westerhof. 1998. Efficient debridement of necrotic wounds using proteolytic enzymes derived from Antarctic krill: a double-blind, placebo-controlled study in a standardized animal wound model. Wound Repair Regen., 6(1), 50-57 https://doi.org/10.1046/j.1524-475X.1998.60108.x
  23. Moretti, V.M., T. Mentasti, F. Bellagamba, U. Luzzana, F. Caprino, G.M. Turchini, I. Giani, and F. Valfre. 2006. Determination of astaxanthin stereoisomers and colour attributes in flesh of rainbow trout (Oncorhynchus mykiss) as a tool to distinguish the dietary pigmentation source. Food Addit. Contam., 23(11), 1056-1063 https://doi.org/10.1080/02652030600838399
  24. Mroz, K. 1981. Effect of krill feeding on the animal organism. Czas. Stomatol., 34(2), 155-158
  25. Nishimura, K., Y. Kawamura, T. Matoba, and D. Yonezawa. 1983. Classification of Proteases in Antarctic Krill. Agric. Biol. Chem., 47(11), 2577-2583 https://doi.org/10.1271/bbb1961.47.2577
  26. Osnes, K.K. 1985. On the purification and characterization of three anionic, serine-type peptide hydrolases from Antarctic krill, Euphausia superba. Comp. Biochem. Physiol., 82(B), 607-619
  27. Osnes, K.K. 1986. On the purification and characterization of exopeptidases from Antarctic krill Euphausia superba. Comp. Biochem. Physiol., 83(B), 445-448 https://doi.org/10.1016/0300-9629(86)90129-5
  28. Osnes, K.K., T.E. Ellingsen, and V. Mohr. 1986. Hydrolysis of proteins by peptide hydrolases of Antarctic krill Euphausia superba. Comp. Biochem. Physiol., 83(B), 801-805
  29. Perona, J.J., C.A. Tsu, C.S. Craik, and R.J. Fletterick. 1997. Crystal structure of an ecotin-collagenase complex suggests a model for recognition and cleavage of the collagen triple helix. Biochemistry, 36(18), 5381-5392 https://doi.org/10.1021/bi9617522
  30. Piekarska, J. and U. Rutkowska. 1978. Nutritional value of semi-processed food products obtained from krill. I. Determination of basic components and minerals in 4 semi-processed krill products. Rocz. Panstw. Zakl. Hig., 29(5), 533-542
  31. Rehbein, H. 1981. Amino acid composition and pepsin digestibility of krill meal. J. Agric. Food Chem., 29(3), 682-684 https://doi.org/10.1021/jf00105a065
  32. Rys, R. and J. Koreleski. 1979. Preliminary investigation on the nutritive value of krill meal in the feed of broiler chickens and laying hens. Arch. Tierernahr., 29(3), 181-188 https://doi.org/10.1080/17450397909423291
  33. Saarialho-Kere, U.K., E.S. Chang, H.G. Welgus, and W.C. Parks. 1992. Distinct localization of collagenase and tissue inhibitor of metalloproteinases expression in wound healing associated with ulcerative pyogenic granuloma. J. Clin. Invest., 90(5), 1952-1957 https://doi.org/10.1172/JCI116073
  34. Saarialho-Kere, U.K., A.P. Pentland, H. Birkedal-Hansen, W.C. Parks, and H.G. Welgus. 1994. Distinct populations of basal keratinocytes express stromelysin-1 and stromelysin-2 in chronic wounds. J. Clin. Invest., 94(1), 79-88 https://doi.org/10.1172/JCI117351
  35. Salo, T., M. Makela, M. Kylmaniemi, H. Autio-Harmainen, and H. Larjava. 1994. Expression of matrix metalloproteinase- 2 and -9 during early human wound healing. Lab Invest., 70(2), 176-182
  36. Sampalis, F., R. Bunea, M.F. Pelland, O. Kowalski, N. Duguet, and S. Dupuis. 2003. Evaluation of the effects of Neptune Krill Oil on the management of premenstrual syndrome and dysmenorrhea. Altern. Med. Rev., 8(2), 171-179
  37. Sangwan, V.S., E.K. Akpek, I. Voo, T. Zhao, V. Pinar, J. Yang, W. Christen, S. Baltatzis, R. Wild, and C.S. Foster. 1999. Krill protease effects on wound healing after corneal alkali burn. Cornea, 18(6), 707-711 https://doi.org/10.1097/00003226-199911000-00014
  38. Sidhu, G.S., W.A. Montgomery, G.L. Holloway, A.R. Johnson, and D.M. Walker. 1970. Biochemical composition and nutritive value of krill (Euphausia superba Dana). J. Sci. Food Agric., 21(6), 293-296 https://doi.org/10.1002/jsfa.2740210606
  39. Siwek, M., A. Bari Noubar, J. Bergmann, B. Niemeyer, and B. Galunsky. 2006. Enhancement of enzymatic digestion of Antarctic krill and successive extraction of selenium organic compounds by ultrasound treatment. Anal. Bioanal. Chem., 384(1), 244-249 https://doi.org/10.1007/s00216-005-0163-x
  40. Siwek, M., B. Galunsky, and B. Niemeyer. 2005. Isolation of selenium organic species from antarctic krill after enzymatic hydrolysis. Anal. Bioanal. Chem., 381(3), 737-741 https://doi.org/10.1007/s00216-004-2936-z
  41. Sjodahl, J., A. Emmer, J. Vincent, and J. Roeraade. 2002. Characterization of proteinases from Antarctic krill (Euphausia superba). Protein Expr. Purif., 26(1), 153-161 https://doi.org/10.1016/S1046-5928(02)00519-3
  42. Takaichi, S., K. Matsui, M. Nakamura, M. Muramatsu, and S. Hanada. 2003. Fatty acids of astaxanthin esters in krill determined by mild mass spectrometry. Comp. Biochem. Physiol. B., 136(2), 317-322 https://doi.org/10.1016/S1096-4959(03)00209-4
  43. Tarnuzzer, R.W. and G.S. Schultz. 1996. Biochemical analysis of acute and chronic wound environments. Wound Repair Regen., 4(3), 321-325 https://doi.org/10.1046/j.1524-475X.1996.40307.x
  44. Tou, J.C., J. Jaczynski, and Y.C. Chen. 2007. Krill for human consumption: nutritional value and potential health benefits. Nutr. Rev., 65(2), 63-77 https://doi.org/10.1111/j.1753-4887.2007.tb00283.x
  45. Turkiewicz, M., E. Galas, and H. Kalinowska. 1991. Collagenolytic serine proteinase from Euphausia superba Dana (Antarctic krill). Comp. Biochem. Physiol. B., 99(2), 359-371 https://doi.org/10.1016/0305-0491(91)90056-J
  46. Turkiewicz, M., E. Galas, H. Kalinowska, I. Romanowska, and M. Zielinska. 1986. Purification and characterization of a proteinase from Euphausia superba Dana (Antarctic krill). Acta. Biochim. Pol., 33(2), 85-99
  47. Venkatraman, J.T., B. Chandrasekar, J.D. Kim, and G. Fernandes. 1994. Effects of n-3 and n-6 fatty acids on the activities and expression of hepatic antioxidant enzymes in autoimmune-prone NZBxNZW F1 mice. Lipids, 29(8), 561-568 https://doi.org/10.1007/BF02536628
  48. Westerhof, W., C.J. van Ginkel, E.B. Cohen, and J.R. Mekkes. 1990. Prospective randomized study comparing the debriding effect of krill enzymes and a non-enzymatic treatment in venous leg ulcers. Dermatologica, 181(4), 293-297 https://doi.org/10.1159/000247828
  49. Zaleska-Freljan, K. and L. Cywinska. 1991. The effect of different krill meals fed to laboratory rats on their blood indices. Comp. Biochem. Physiol. A., 98(1), 133-136 https://doi.org/10.1016/0300-9629(91)90590-9

Cited by

  1. Cold-Adapted Proteases as an Emerging Class of Therapeutics vol.2, pp.1, 2013, https://doi.org/10.1007/s40121-013-0002-x