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ABSTRACT. Duke and Imamoḡlu express the Eichler integrals associated to modular forms
of weight 3 in terms of generalized hypergeometric functions. We extend this result to most
general modular forms of weight 3.

1. Introduction

In the classical theory of modular forms one associates to a cusp form f(τ) of integral weight
k ≥ 2 its Eichler integral ∫ i∞

τ
(τ − σ)k−2f(σ)dσ

where the integral is to be taken over the vertical line σ = τ + iR+ in H.
And a hypergeometric series is a power series in which the ratios of successive coefficients

an is a rational function of n. This series, if convergent, will define a hypergeometric function.
Hypergeometric functions are solutions to the hypergeometric differential equation.

The hypergeometric differential equation is

z(1− z)
d2w

dz2
+ [c− (a + b + 1)z]

dw

dz
− abw = 0. (1)

Then what is the solution of this equation? To answer this question we introduce the 2F1, the
classical standard hypergeometric series.

The classical standard hypergeometric series is given by

2F1(a1, a2; b1|x) :=
∞∑

n=0

(a)n(b)n

(c)n

xn

n!

where (a)n = Γ(a+n)/Γ(a) is the rising factorial or Pochhammer symbol. Then 2F1(a, b; c|w)
is a solution of (1).
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In this paper we will use generalized hypergeometric series defined for |x| < 1 by

F (x) = F (a1, · · · , am; b1, · · · , bm−1|x) =
∞∑

n=0

(a1)n · · · (am)n

(b1)n · · · (bm−1)n

xn

n!
, (2)

where no (bk)n = 0. It is well-known that for any fixed choice of b ∈ {1, b1, · · · , bm−1}, the
function xb−1F (x) satisfies an m-th order hypergeometric equation.

To state the result of Duke and Imamoḡlu we need the Eisenstein series

E4(τ) = 1 + 240
∑

n≥1

σ3(n)qn and E6(τ) = 1− 504
∑

n≥1

σ5(n)qn,

and the normalized discriminant function

∆(τ) =
1

1728
(E3

4(τ)− E2
6(τ)) = q

∏

n≥1

(1− qn)24,

where σs(n) =
∑

d|n
ds. Let j(τ) be the classical modular invariant given by

j(τ) = E3
4(τ)/∆(τ)

and let x = 1− 1728/j and t = 1− x. It is a classical fact that a pair of linearly independent
solutions to the hypergeometric equation

t(1− t)Y ′′ + (1− 3
2
t)Y ′ − 5

144
Y = 0

is given by

F1(t) = F (
1
12

,
5
12

; 1|t) and F2(t) = τ(t)F1(t),

where τ(t) is the inverse of t(τ). Then we have the following result [1]:

Theorem 1.1. We have
∫ i∞

τ
(τ − σ)

∆(σ)

E6(σ)
3
2

dσ = −4(1− t)
1
4

(12)3π2

F (1− t)
F1(t)

−
√

6i

(12)3π2
τ −

√
6log(5 + 2

√
6)

(12)3π2

where F (x) = F (1
3 , 2

3 , 1; 3
4 , 5

4 |x).

Here the modular form in the integral is of weight 3. We extend this result to most general
modular forms of weight 3.
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2. General Formula

Let F1(t) = F ( 1
12 , 5

12 , 1|t) and p(x) ∈ C[x] such that p(0) 6= 0. Then we get the following
general formula:

Theorem 2.1. We get these relations:

(1)
∫ i∞
τ (τ − σ) ∆(σ)

E6(σ)
3
2
(1− t(σ))

3
4
+rp(1− t(σ))dσ =

m−1∑

l=1

al(1− t)r+l

F1(t)

+
am(1− t)r+m

F1(t)
F (1− t) + am

Γ(r + m + 1)
Γ(r + m + 5

12)
2πiτ + O(1)

for some al, a ∈ C where m = deg(p)− 1, r + m 6∈ {−1,−2, · · · } ∪ {−1
2 ,−3

2 , · · · }
and F (t) = F (r + m + 1

12 , r + m + 5
12 , 1; r + m + 1

2 , r + m + 1|t).

(2)
∫ i∞
τ (τ − σ) ∆(σ)

E6(σ)
3
2
(1− t(σ))

3
4 t(σ)rp(t(σ))dσ =

m−1∑

l=1

blt
r+l

F1(t)
+

bmtr+m

F1(t)
G(t)

for some bl ∈ C where m = deg(p) − 1, r + m 6∈ {−1,−2, · · · } and G(t) = F (r +
m + 1

12 , r + m + 5
12 , 1; r + m + 1, r + m + 1|t).

Remark 2.2. (1) If r and p(x) are given then a, al and bl can be computed.
(2) If we put r = −3

4 and p(x) = 1 in (1) of Theorem2.1, then we get the result of the
Duke and Imamoḡlu.

3. Proof Of The Theorem

Proofs of (1) and (2) of Theorem2.1 are similar. So we will prove only (1). Write u = t(τ)
and let

H(u) := 4π2F1(u)
∫ τ(u)

i∞
(σ − τ(u))

1728∆(σ)

E6(σ)
3
2

(1− t(σ))
3
4
+rp(1− t(σ))dσ. (3)

By changing variables σ 7→ t = t(σ) we get

H(u) = 2πi

∫ u

0
(F1(t)F2(u)− F1(u)F2(t))(1− t)r− 1

2 p(1− t)dt.

Now apply the differential operator

Lu = u(1− u)
d2

du2
+ (1− 3

2
u)

d

du
− 5

144
to this integral to get

Lu(H(u)) = (1− u)rp(1− u).
Letting x = 1− u this equation can be written

x(1− x)Y ′′ + (
1
2
− 3

2
x)Y ′ − 5

144
Y = xrp(x). (4)
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By using the method of Frobenius we see that
m−1∑

l=1

alx
l + amxr+mF (x)

is a solution where m is the degree of p(x) and F (x) = F (r +m+ 1
12 , r +m+ 5

12 , 1; r +m+
1
2 , r + m + 1|x). Thus it follows that for some constants a and b we have

H(t) = aF1(t) + bF2(t) +
m−1∑

l=1

alx
l + amxr+mF (x).

From (3) we get for some constants bl, c, d ∈ R∫ τ

i∞
(τ − σ)

∆(σ)

E6(σ)
3
2

(1− t(σ))
3
4
+rp(1− t(σ))dσ

=
m−1∑

l=1

bl

F1(t)
(1− t)l +

bm

F1(t)
(1− t)r+mF (1− t) + cτ + d.

In order to compute the constant c, let τ = iy and take y → ∞. From the asymptotic
formula

F (a, b, c; d, e|1− t) = − Γ(d)Γ(e)
Γ(a)Γ(b)Γ(c)

(2πiτ) + O(1), as y →∞
we compute the constant c.
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