J. KSIAM Vol.12, No.4, 223-226, 2008

HYPERGEOMETRIC FUNCTIONS AND EICHLER INTEGRALS

SUBONG LIM

DEPARTMENT OF MATHEMATICS AND PMI, POHANG UNIVERSITY OF SCIENCE AND TECHNOLOGY, SOUTH KOREA

E-mail address: subong@postech.ac.kr

ABSTRACT. Duke and Imamoglu express the Eichler integrals associated to modular forms of weight 3 in terms of generalized hypergeometric functions. We extend this result to most general modular forms of weight 3.

1. Introduction

In the classical theory of modular forms one associates to a cusp form $f(\tau)$ of integral weight $k \ge 2$ its Eichler integral

$$\int_{\tau}^{i\infty} (\tau - \sigma)^{k-2} f(\sigma) d\sigma$$

where the integral is to be taken over the vertical line $\sigma = \tau + i\mathbb{R}^+$ in \mathcal{H} .

And a hypergeometric series is a power series in which the ratios of successive coefficients a_n is a rational function of n. This series, if convergent, will define a hypergeometric function. Hypergeometric functions are solutions to the hypergeometric differential equation.

The hypergeometric differential equation is

$$z(1-z)\frac{d^2w}{dz^2} + [c - (a+b+1)z]\frac{dw}{dz} - abw = 0.$$
 (1)

Then what is the solution of this equation? To answer this question we introduce the $_2F_1$, the classical standard hypergeometric series.

The classical standard hypergeometric series is given by

$$_{2}F_{1}(a_{1}, a_{2}; b_{1}|x) := \sum_{n=0}^{\infty} \frac{(a)_{n}(b)_{n}}{(c)_{n}} \frac{x^{n}}{n!}$$

where $(a)_n = \Gamma(a+n)/\Gamma(a)$ is the rising factorial or Pochhammer symbol. Then ${}_2F_1(a,b;c|w)$ is a solution of (1).

Received by the editors October 28, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 11F11.

Key words and phrases. Hypergeometric function, Eichler Integral.

The author's work was supported in part by KRF-2007-412-J02301 and ITRC.

SUBONG LIM

In this paper we will use generalized hypergeometric series defined for |x| < 1 by

$$F(x) = F(a_1, \cdots, a_m; b_1, \cdots, b_{m-1} | x) = \sum_{n=0}^{\infty} \frac{(a_1)_n \cdots (a_m)_n}{(b_1)_n \cdots (b_{m-1})_n} \frac{x^n}{n!},$$
(2)

where no $(b_k)_n = 0$. It is well-known that for any fixed choice of $b \in \{1, b_1, \dots, b_{m-1}\}$, the function $x^{b-1}F(x)$ satisfies an *m*-th order hypergeometric equation.

To state the result of Duke and Imamoglu we need the Eisenstein series

$$E_4(\tau) = 1 + 240 \sum_{n \ge 1} \sigma_3(n) q^n$$
 and $E_6(\tau) = 1 - 504 \sum_{n \ge 1} \sigma_5(n) q^n$,

and the normalized discriminant function

$$\Delta(\tau) = \frac{1}{1728} (E_4^3(\tau) - E_6^2(\tau)) = q \prod_{n \ge 1} (1 - q^n)^{24},$$

where $\sigma_s(n) = \sum_{d \mid n} d^s.$ Let $j(\tau)$ be the classical modular invariant given by

$$j(\tau) = E_4^3(\tau) / \Delta(\tau)$$

and let x = 1 - 1728/j and t = 1 - x. It is a classical fact that a pair of linearly independent solutions to the hypergeometric equation

$$t(1-t)Y'' + (1-\frac{3}{2}t)Y' - \frac{5}{144}Y = 0$$

is given by

$$F_1(t) = F(\frac{1}{12}, \frac{5}{12}; 1|t)$$
 and $F_2(t) = \tau(t)F_1(t)$

where $\tau(t)$ is the inverse of $t(\tau)$. Then we have the following result [1]:

Theorem 1.1. We have

$$\int_{\tau}^{i\infty} (\tau - \sigma) \frac{\Delta(\sigma)}{E_6(\sigma)^{\frac{3}{2}}} d\sigma = -\frac{4(1-t)^{\frac{1}{4}}}{(12)^3 \pi^2} \frac{F(1-t)}{F_1(t)} - \frac{\sqrt{6}i}{(12)^3 \pi^2} \tau - \frac{\sqrt{6}log(5+2\sqrt{6})}{(12)^3 \pi^2} \tau - \frac{1}{(12)^3 \pi^2} \tau - \frac{1}{(12)^3$$

where $F(x) = F(\frac{1}{3}, \frac{2}{3}, 1; \frac{3}{4}, \frac{5}{4}|x).$

Here the modular form in the integral is of weight 3. We extend this result to most general modular forms of weight 3.

224

2. General Formula

Let $F_1(t) = F(\frac{1}{12}, \frac{5}{12}, 1|t)$ and $p(x) \in \mathbb{C}[x]$ such that $p(0) \neq 0$. Then we get the following general formula:

Theorem 2.1. We get these relations:

$$\begin{array}{l} (1) \ \int_{\tau}^{i\infty} (\tau - \sigma) \frac{\Delta(\sigma)}{E_{6}(\sigma)^{\frac{3}{2}}} (1 - t(\sigma))^{\frac{3}{4} + r} p(1 - t(\sigma)) d\sigma = \sum_{l=1}^{m-1} \frac{a_{l}(1 - t)^{r+l}}{F_{1}(t)} \\ + \frac{a_{m}(1 - t)^{r+m}}{F_{1}(t)} F(1 - t) + a_{m} \frac{\Gamma(r + m + 1)}{\Gamma(r + m + \frac{5}{12})} 2\pi i \tau + O(1) \\ for \ some \ a_{l}, a \in \mathbb{C} \ where \ m = deg(p) - 1, r + m \notin \{-1, -2, \cdots\} \cup \{-\frac{1}{2}, -\frac{3}{2}, \cdots\} \\ and \ F(t) = F(r + m + \frac{1}{12}, r + m + \frac{5}{12}, 1; r + m + \frac{1}{2}, r + m + 1|t). \\ (2) \ \int_{\tau}^{i\infty} (\tau - \sigma) \frac{\Delta(\sigma)}{E_{6}(\sigma)^{\frac{3}{2}}} (1 - t(\sigma))^{\frac{3}{4}} t(\sigma)^{r} p(t(\sigma)) d\sigma = \sum_{l=1}^{m-1} \frac{b_{l}t^{r+l}}{F_{1}(t)} + \frac{b_{m}t^{r+m}}{F_{1}(t)} G(t) \\ for \ some \ b_{l} \in \mathbb{C} \ where \ m = deg(p) - 1, r + m \notin \{-1, -2, \cdots\} \ and \ G(t) = F(r + m + \frac{1}{12}, r + m + 1, r + m + 1|t). \end{array}$$

Remark 2.2. (1) If r and p(x) are given then a, a_l and b_l can be computed. (2) If we put $r = -\frac{3}{4}$ and p(x) = 1 in (1) of Theorem2.1, then we get the result of the Duke and Imamoglu.

3. Proof Of The Theorem

Proofs of (1) and (2) of Theorem 2.1 are similar. So we will prove only (1). Write $u = t(\tau)$ and let

$$H(u) := 4\pi^2 F_1(u) \int_{i\infty}^{\tau(u)} (\sigma - \tau(u)) \frac{1728\Delta(\sigma)}{E_6(\sigma)^{\frac{3}{2}}} (1 - t(\sigma))^{\frac{3}{4} + r} p(1 - t(\sigma)) d\sigma.$$
(3)

By changing variables $\sigma \mapsto t = t(\sigma)$ we get

$$H(u) = 2\pi i \int_0^u (F_1(t)F_2(u) - F_1(u)F_2(t))(1-t)^{r-\frac{1}{2}}p(1-t)dt.$$

Now apply the differential operator

$$L_u = u(1-u)\frac{d^2}{du^2} + (1-\frac{3}{2}u)\frac{d}{du} - \frac{5}{144}$$

to this integral to get

$$L_u(H(u)) = (1-u)^r p(1-u).$$

Letting x = 1 - u this equation can be written

$$x(1-x)Y'' + (\frac{1}{2} - \frac{3}{2}x)Y' - \frac{5}{144}Y = x^r p(x).$$
(4)

By using the method of Frobenius we see that

$$\sum_{l=1}^{m-1} a_l x^l + a_m x^{r+m} F(x)$$

is a solution where m is the degree of p(x) and $F(x) = F(r+m+\frac{1}{12}, r+m+\frac{5}{12}, 1; r+m+\frac{1}{2}, r+m+1|x)$. Thus it follows that for some constants a and b we have

$$H(t) = aF_1(t) + bF_2(t) + \sum_{l=1}^{m-1} a_l x^l + a_m x^{r+m} F(x).$$

From (3) we get for some constants $b_l, c, d \in \mathbb{R}$

$$\int_{i\infty}^{\tau} (\tau - \sigma) \frac{\Delta(\sigma)}{E_6(\sigma)^{\frac{3}{2}}} (1 - t(\sigma))^{\frac{3}{4} + r} p(1 - t(\sigma)) d\sigma$$
$$= \sum_{l=1}^{m-1} \frac{b_l}{F_1(t)} (1 - t)^l + \frac{b_m}{F_1(t)} (1 - t)^{r+m} F(1 - t) + c\tau + d$$

In order to compute the constant c, let $\tau = iy$ and take $y \to \infty$. From the asymptotic formula $\Gamma(I)\Gamma(z)$

$$F(a,b,c;d,e|1-t) = -\frac{\Gamma(d)\Gamma(e)}{\Gamma(a)\Gamma(b)\Gamma(c)}(2\pi i\tau) + O(1), \text{ as } y \to \infty$$

we compute the constant c.

REFERENCES

- W. Duke and Ö.Imamoğlu, The zeros of the Weierstrass P-function and hypergeometri series, Math. Ann. 340 (2008), no. 4, 897-905
- [2] M. Eichler and D. Zagier, The theory of Jacobi forms. Progress in Mathematics, 55. Birkhuser Boston, Inc., Boston, MA, 1985.
- [3] A. W. Babister, Transcendental functions satisfying nonhomogeneous linear differential equations. Macmillan, New York 1967.
- [4] W. N. Bailey, Generalized hypergeometric series. Cambridge Tracts in Mathematics and Mathematical Physics, Stechert-Hafner, Inc., New Yrok 1964.
- [5] R. Evans and D. Stanton, Asymptotic formulas for zero-balanced hypergeometric series. SIAM J. Math. Anal. 15(1984), no. 5, 1010-1020.