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ABSTRACT. With growing applications of wireless video streaming, an efficient video traffic
model featuring modern high-compression techniques is more desirable than ever, because the
wireless channel bandwidths are ever limited and time-varying. We propose a modeling and
analysis method for video traffic by a class of stochastic processes, which we call ‘GeoY /G/∞
input processes’. We model video traffic by GeoY /G/∞ input process with gamma-distributed
batch sizes Y and Weibull-like autocorrelation function. Using four real-encoded, full-length
video traces including action movies, a drama, and an animation, we evaluate our modeling
performance against existing model, transformed-M /G/∞ input process, which is one of most
recently proposed video modeling methods in the literature. Our proposed GeoY /G/∞ model
is observed to consistently provide conservative performance predictions, in terms of packet
loss ratio, within acceptable error at various traffic loads of interest in practical multimedia
streaming systems, while the existing transformed-M /G/∞ fails. For real-time implementation
of our model, we analyze G/D/1/K queueing systems with GeoY /G/∞ input process to upper
estimate the packet loss probabilities.

1. INTRODUCTION

With the advance of video compression technologies, next generation ubiquitous networks
are expected to accommodate heavily compressed streaming video traffic on wireless and/or
wireline channels. An efficient video traffic model featuring modern high compression tech-
niques is more desirable than ever, because the wireless channel bandwidths are ever lim-
ited and time-varying. Quality of service management requires sophisticated resource control
schemes based on up-to-date video traffic models which are verified with real video traces with
the state-of-the-art of video compression techniques such as MPEG4 or H.264 [1].

It has been shown that packetized video traffic streams have both long-range dependence
and short-range dependence properties [2, 3, 4, 5]. Therefore, a video modeling method based
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on either of long-range dependence or short-range dependence is not expected to gurantee the
modeling performance for full length video streams over practical communication systems. A
modeling method, ‘transformed-M/G/∞ input process’ has recently been proposed [3] with au-
tocorrelation function ρ(k) = e−β

√
k as a compromise between long-range dependence models

with ρ(k) = e−β log k and Markovian or short-range dependence models with ρ(k) = e−βk.
As shown in the performance evaluation section of [3], the transformed-M/G/∞ input process
model outperforms traditional existing models. From a practical application point of view,
however, its drawback is that it is not tractable in queueing analysis due to the transforma-
tion of the marginal distribution. Therefore, it is not readily applicable as real time algorithms
such as real-time call admission control, real-time packet scheduling, and so on. Also, in our
extensive simulations, the transformed-M/G/∞ input process model does not estimate exact
queueing performance in all situations.

In this paper, we propose a class of stochastic process which we call ‘GeoY /G/∞ input pro-
cess’ characterizing both long-range and short-range dependences and yet tractable in queueing
analyses for real-time applications. In order to model the number of video packets in a fixed-
size time slot, we propose GeoY /G/∞ input process with gamma-distributed batch sizes Y and
Weibull-like autocorrelation function. The model parameters are determined by matching the
marginal statistics and autocorrelation of video frame size to the corresponding statistics of the
model. A desirable video traffic model is expected to be mathematically tractable so that it
can be real-time implementable as a practical packet scheduler. In this context, we analyze a
discrete-time single server, infinite-buffer queue with GeoY /G/∞ input process by large devi-
ation theory. We obtain an upper bound of loss ratio with a form simple enough to be real-time
implementable. The derived upper bound of loss ratio helps to guarantee quality of service be-
cause it gives conservative packet loss levels in real systems such as routers, scheduling servers,
etc.

The rest of this paper is organized as follows. In Section II we introduce our proposed
GeoY /G/∞ input processes. In Section III we present the procedure for parameter matching
between real video traces and GeoY /G/∞ input processes in terms of autocorrelation function
and marginal distribution. Discrete-time single server queue with GeoY /G/∞ input processes
is analyzed in Section IV. Finally, a conclusion is drawn in Section V.

2. GEOY /G/∞ INPUT PROCESSES

In this section, we introduce our proposed stochastic process, which we call ‘GeoY /G/∞
input process.’ Consider a discrete-time queueing system where bt+1 denotes the number of
arrivals at the start of time slot [t, t + 1), t = · · · ,−1, 0, 1, · · · . Let us now call the arrival
process {bt} a ‘GeoY /G/∞ input process’ when it is given as the busy server process of a
discrete-time GeoY /G/∞ system, as an extension of M/G/∞ input process [3, 7, 8].

For a GeoY /G/∞ system, the arrival is according to a batch Bernoulli process where the
batch size Yt ∈ {0, 1, · · · } in time slot t forms an i.i.d. random process {Yt; t = · · · ,−1, 0, 1, · · · }.
During t-th time slot, Yt = yt new customers arrive into the GeoY /G/∞ system; then, customer
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i (i = 1, . . . , yt) is presented to its own server who begins service from the next slot with ser-
vice duration σt,i ∈ {1, 2, · · · } time slots. We take {σt,i} to be i.i.d. rv’s.

We have the number of busy servers (or, equivalently, number of customers) bt at time slot
t, which is given by

bt =
t∑

s=−∞

Ys∑

i=1

1[σs,i > t− s], (1)

where 1[·] is the indicator function.
The correlated process {bt; t = · · · ,−1, 0, 1, · · · } is easily shown to be stationary and

ergodic. To characterize the marginal statistics, the probability generating function (PGF) of bt

is represented as
∞∑

i=0

ziP[bt = i] =
∞∏

k=0

X (akz + (1− ak)) (2)

where ak ≡ P[σ > k] and X(z) is the PGF of batch size, such that

X(z) ≡
∞∑

i=0

ziP[Y = i].

From (2), the mean and variance of bt are given by, respectively,

E[b] = E[Y ]E[σ] (3)

and

Var[b] = E[b] + (Var[Y ]− E[Y ])
∞∑

i=0

P[σ > i]2. (4)

The covariance structure of {bt; t = · · · ,−1, 0, 1, · · · } is given by

Γ(k) ≡ cov [bt, bt+k]

= E[Y ]
∞∑

i=k

P[σ > i] + (Var[Y ]− E[Y ])
∞∑

i=0

P[σ > i]P[σ > i + k], (5)

where k = 0, 1, · · · , and the autocorrelation function (ACF) is defined as

ρ(k) ≡ Γ(k)
Γ(0)

=
Γ(k)
Var[b]

. (6)

We also define the forward recurrence time, σ̂, associated with the service time σ such that

P[σ̂ = r] ≡ P[σ ≥ r]
E[σ]

, r = 1, 2, · · · ,

and define
vt ≡ − ln P[σ̂ > t]. (7)
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TABLE 1. Summary of the MPEG4-encoded VBR traces used in the study
(QCIF, Qp=5)

Movie Length Number of Mean frame Variance of
(time) frames size [packets] frame size [packets2]

Terminator 2 2:16:02 195,909 134.84 3829.4
The Fifth Element 2:05:49 181,195 157.10 4529.1

The English Patient 2:41:18 199,998 91.0 2238.9
Shrek 1:29:58 129,566 128.65 4356.5

3. VIDEO TRAFFIC MODELING BY GEOY /G/∞ INPUT PROCESS WITH
GAMMA-DISTRIBUTED BATCHES Y

In this section, we propose a video traffic modeling scheme with GeoY /G/∞ input process
with gamma-distributed batches, Y . In our study, we examined real video traces including
action movies, a drama, and an animation as in Table 1. Each video is full-length in quarter
common intermediate format (QCIF) format at 24 frames/sec, that is most widely-used format
in wireless video transmission. We use public domain Microsoft MPEG4 Visual Reference
Software version 2 FDMA1-2.3-001213, to encode/decode video data. In our experiments,
we encode each frame as an I frame so that we obtain as many samples as possible to get
exact statistics from a real video trace. The quantization step (Qp) is set to be 5, which is
correspond to about 200 Kbps video traffic that is suitable for current 3-rd generation (3G)
wireless channels. In the table, the mean and standard deviation of the frame size is represented
in [packets] where the packet size is 24 Bytes as is the 192-bit payload size in General Packet
Radio Service (GPRS) [6].

Our modeling with GeoY /G/∞ input process is by matching the moments and autocorre-
lation function of {bt} with those of the sequence of frame size. We note that our proposed
model can be applied to modern Group of Picture (GOP) based video compression with I, P
and B frames by taking the modeling unit as a GOP size instead of a frame size.

From Table 1, we match the mean and variance of frame size with E[b] and Var[b], re-
spectively. We then match the autocorrelation function as Weibull-like characteristics ρ(k) =
e−βkα

(0 < α < 1, β > 0) in terms of least mean squared error. The fitting parameters are
shown in Table 2 for our proposed method together with ρ(k) = e−βM

√
k from transformed-

M/G/∞ input process, or ‘t-M/G/∞,’ [3].
We show the curve fitting results for autocorrelation function (ACF) with The Fifth Element

in Fig. 1. As expected, the curve ρ(k) = e−0.078k0.42
from GeoY /G/∞ better fits to the real

trace than ρ(k) = e−0.043
√

k from t-M/G/∞, in terms of mean squared error.
Given measured E[b], Var[b], α, and β, we now determine the distribution of the service

time, σ, for GeoY /G/∞ input process. Let us define the distribution of σ

C(k) ≡ P[σ > k]. (8)
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TABLE 2. Parameter estimation for autocorrelation function (ACF)

Movie GeoY /G/∞ t-M/G/∞ [2]
α β βM

Terminator 2 0.48 0.065 0.055
The Fifth Element 0.42 0.078 0.043

The English Patient 0.55 0.040 0.056
Shrek 0.61 0.013 0.030
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FIGURE 1. Autocorrelation function fitting for movie The Fifth Element

Manipulate (5) and (6) to obtain

(E[Y ] + Var[Y ])
∞∑

k=n

C(k)

= Var[b]e−βnα
+

∞∑

k=0

C(n + k) {Var[Y ] (1− C(k)) + E[Y ]C(k)} . (9)

We calculate the distribution of σ, C(n), by successive iteration according to the following
steps:
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• Step 1: (Initialization) For n = 0, 1, · · · , calculate

Cold(n) ⇐ e−βnα − e−β(n+1)α

1− e−β
(10)

Here the left arrow ‘⇐’ means assignment of the value on right hand side the term on
left hand side.

• Step 2: Calculate

E[Y ] ⇐ E[b]∑∞
k=0 Cold(k)

Var[Y ] ⇐ Var[b]− E[b]∑∞
k=0 Cold(k)2

+ E[Y ]

• Step 3: For n = 0, 1, · · · , calculate

Cnew(n) ⇐ Var[b]
(
e−βnα − e−β(n+1)α)

+ A(n)−A(n + 1)
E[Y ] + Var[Y ]

(11)

where

A(n) ≡
∞∑

k=0

Cold(n + k) {Var[Y ] (1− Cold(k)) + E[Y ]Cold(k)} .

• Step 4: Assure that Cnew(0) = 1.
• Step 5: If Cold(n) and Cnew(n) are close to each other within a criterion, then C(n) ⇐

Cold(n) and stop. Otherwise, update Cold(n) ⇐ Cnew(n) for n = 0, 1, · · · and go to
Step 2.

All that is left now is to find the distribution of the batch size Y . From extensive studies with
various distribution functions, we observe best modeling performance with gamma-distributed
Y for our proposed GeoY /G/∞ input process model. Note that we have already obtained E[Y ]
and Var[Y ] when calculating the distribution of σ in the above successive iteration. We propose
that

P[Y ≤ y] =
γ(η, (y + 1)/θ)

Γ(η)
, (y = 0, 1, · · · ) (12)

where the scale parameter θ and shape parameter η are given by

θ =
Var[Y ]
E[Y ]

, (13)

η =
E[Y ]

θ
. (14)

Here γ(a, z) is a lower incomplete gamma function and Γ(a) is a complete gamma function.
In summary, we determine model parameters GeoY /G/∞ input process with gamma-distributed

batch according to the following steps:
(i) Match ρ(k) with real trace in terms of minimum mean squared error to obtain α and β.
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FIGURE 2. Complementary frame-size distribution for The Fifth Element

(ii) Measure the mean and variance of frame size to be matched with E[b] and Var[b], respec-
tively.
(iii) Calculate the distribution of σ, C(k), together with E[Y ] and Var[Y ].
(iv) Finally, calculate the parameters θ and η for gamma distribution for Y .

The marginal distribution of the frame size is illustrated in Fig. 2 where the complemen-
tary frame-size distribution is shown for The Fifth Element. With QCIF-encoded video traces,
The Fifth Element, the tail of the distribution drops rapidly yielding the maximum frame size,
fmax = 506 [packets], rather than Pareto tail [3]. This is expected because QCIF-encoded
video frames are highly compressed, which are commonly used in transmission on limited-
bandwidth wireless channel. In Fig. 2, dashed line is from our proposed GeoY /G/∞ input
process. It is observed that GeoY /G/∞ input process gives a more slowly decaying tail than
the real trace. We only use gamma transformation for t-M/G/∞ input process due to rapidly-
dropping tail. It is noted that for both models, the fitting is based on matching the mean and
variance between models and real traces.

Finally, we evaluate modeling performance in terms of packet loss ratio (PLR). A summary
of the simulation results to two significant digits is given in Table 3 for each of the four video
traces at various offered traffic loads: heavy load (U = 0.7), moderate load (U = 0.5), and
light load (U = 0.3). With The Fifth Element, we use U = 0.4 for light load, because no
packet losses are observed with the real trace for U = 0.3. For the modeling results, we
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generate synthesis traces and apply them into a G/D/1/K queueing system to estimate packet
loss probabilities. We conduct the discrete-event simulation at the frame level.

The buffer size is varied from 10 to 3000. It is observed that increasing buffer barely provides
improvement in performance, which is remarkable especially for higher load. In contrast,
reducing the load (i.e., increasing bandwidth) improves the packet loss ratio significantly.

In the heavy load regime, both t-M/G/∞ and GeoY /G/∞ models provide acceptable pre-
dictions of PLR, with GeoY /G/∞ being more accurate. In the moderate regime, GeoY /G/∞
model yields more accurate estimations than t-M/G/∞ model which underestimates PLR by
about 50buffer size of 1000 [packets]. In the light load regime, GeoY /G/∞ model overesti-
mates PLR, while t-M/G/∞ model underestimates it and is overly sensitive to the buffer size
as shown with Terminator 2. Also, it is desirable for a model to give overestimated, i.e., con-
servative PLR rather than underestimated PLR, because implementing real systems based on
underestimated PLR may not guarantee quality of service. Overall, GeoY /G/∞ model is ob-
served to consistently provide conservative performance predictions within acceptable error at
various traffic loads. It is difficult to analyze queueing systems with t-M/G/∞ input processes.
GeoY /G/∞ model is mathematically tractable as shown in the next section

4. ANALYSIS OF QUEUEING SYSTEMS WITH GEOY /G/∞ INPUT PROCESSES

It is desirable to show that our proposed GeoY /G/∞ Input Processes is applicable in real-
time implementation is practical video streaming stream on the communication systems. We
now consider a discrete-time single-server queue with infinite buffer and constant release rate
of c packets/slot under first-come first-served discipline, of which the arrival is GeoY /G/∞
input process. The goal of this section is to obtain an upper bound of the packet loss ratio in a
form simple enough to be real-time implementable.

Let qt denote the number of cells remaining in the buffer by the end of slot [t− 1, t), and let
bt+1 denote the number of new cells which arrive at the start of time slot [t, t + 1). Then the
buffer content sequence {qt, t = · · · ,−1, 0, 1, · · · } evolves according to the Lindley recursion

qt+1 = [qt + bt+1 − c]+, t = · · · ,−1, 0, 1, · · · (15)

for some initial condition q.
{qt; · · · ,−1, 0, 1, · · · } is uniquely determined by equation (15) if E[Y ]E[σ] < c, and it

is stationary. The queueing system will reach statistical equilibrium if E[Y ]E[σ] < c. The
stationary and ergodic input process {bt; t = 0, 1, · · · } is reversible sequence and the steady
state buffer content is given by

q0 =st sup{S̃t − ct, t = 0, 1, · · · } (16)

with
S̃0 = 0; S̃t = b−1 + b−2 + · · ·+ b−t, t = 1, 2, · · · . (17)

We note that, for each t = 0, 1, · · · ,
bt = b

(0)
t + b

(a)
t , (18)
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TABLE 3. Modeling Performance : Mean packet loss ratio at three different
loads, U

Buffer U = 0.3 U = 0.5 U = 0.7

size [pkts] real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞
10 3.6E-4 3.1E-5 3.1E-3 1.5E-2 8.3E-3 1.8E-2 5.6E-2 5.2E-2 5.7E-2
50 3.5E-4 2.0E-5 2.8E-3 1.5E-2 7.4E-3 1.8E-2 5.5E-2 4.9E-2 5.7E-2
100 3.5E-4 1.4E-5 2.6E-3 1.5E-2 6.9E-3 1.7E-2 5.4E-2 4.7E-2 5.6E-2
500 2.9E-4 2.8E-6 1.7E-3 1.4E-2 5.4E-3 1.4E-2 5.0E-2 4.2E-2 5.1E-2

1000 2.1E-4 3.5E-7 1.3E-3 1.3E-2 4.5E-3 1.3E-2 4.7E-2 3.8E-2 4.8E-2
2000 1.2E-4 0 8.2E-4 1.2E-2 3.5E-3 1.0E-2 4.2E-2 3.4E-2 4.4E-2
3000 8.5E-5 0 6.0E-4 1.2E-2 2.9E-3 8.8E-3 3.9E-2 3.1E-2 4.0E-2

(a) Terminator 2

Buffer U = 0.4(∗) U = 0.5 U = 0.7

size [pkts] real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞
10 1.6E-3 7.4E-4 6.7E-3 9.1E-3 5.2E-3 1.4E-2 4.9E-2 4.3E-2 4.8E-2
50 1.5E-3 6.5E-4 6.4E-3 9.0E-3 4.7E-3 1.4E-2 4.8E-2 4.1E-2 4.8E-2
100 1.5E-3 6.0E-4 6.0E-3 8.9E-3 4.4E-3 1.3E-2 4.8E-2 4.0E-2 4.7E-2
500 1.3E-3 4.7E-4 4.6E-3 8.2E-3 3.5E-3 1.1E-2 4.4E-2 3.6E-2 4.4E-2

1000 1.2E-3 4.0E-4 3.7E-3 7.6E-3 3.0E-3 9.9E-3 4.1E-2 3.3E-2 4.1E-2
1500 1.1E-3 3.5E-4 3.2E-3 7.1E-3 2.7E-3 8.9E-3 3.9E-2 3.1E-2 3.9E-2
2000 1.1E-3 3.2E-4 2.8E-3 6.7E-3 2.4E-3 8.1E-3 3.7E-2 3.0E-2 3.7E-2
3000 1.0E-3 2.8E-4 2.2E-3 6.1E-3 2.1E-3 6.9E-3 3.4E-2 2.7E-2 3.5E-2

(b) The Fifth Element

Buffer U = 0.3 U = 0.5 U = 0.7

size [pkts] real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞
10 5.5E-4 2.8E-4 3.7E-3 2.2E-2 1.5E-2 2.6E-2 8.0E-2 6.8E-2 7.5E-2
50 5.4E-4 2.2E-4 3.5E-3 2.2E-2 1.3E-2 2.5E-2 7.9E-2 6.4E-2 7.4E-2
100 5.3E-4 1.9E-4 3.2E-3 2.2E-2 1.2E-2 2.4E-2 7.8E-2 6.2E-2 7.3E-2
500 4.1E-4 1.1E-4 2.3E-3 2.0E-2 9.6E-3 2.1E-2 7.4E-2 5.4E-2 6.8E-2

1000 3.1E-4 7.6E-5 1.7E-3 1.8E-2 8.2E-3 1.9E-2 7.0E-2 4.9E-2 6.4E-2
1500 2.3E-4 5.4E-5 1.4E-3 1.7E-2 7.3E-3 1.7E-2 6.6E-2 4.5E-2 6.1E-2
2000 1.8E-4 3.9E-5 1.1E-3 1.6E-2 6.6E-3 1.6E-2 6.3E-2 4.3E-2 5.8E-2
3000 8.6E-5 1.9E-5 7.9E-4 1.4E-2 5.6E-3 1.4E-2 5.9E-2 3.8E-2 5.4E-2

(c) The English Patient

Buffer U = 0.3 U = 0.5 U = 0.7

size [pkts] real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞ real t-M/G/∞ GeoY /G/∞
10 5.3E-4 2.8E-4 2.2E-3 2.0E-2 1.5E-2 2.2E-2 7.4E-2 6.7E-2 7.2E-2
50 5.2E-4 2.5E-4 2.2E-3 2.0E-2 1.4E-2 2.2E-2 7.3E-2 6.5E-2 7.2E-2
100 5.1E-4 2.3E-4 2.1E-3 2.0E-2 1.4E-2 2.2E-2 7.3E-2 6.4E-2 7.2E-2
500 4.4E-4 1.7E-4 1.8E-3 1.9E-2 1.2E-2 2.1E-2 7.0E-2 6.0E-2 7.0E-2

1000 3.8E-4 1.4E-4 1.5E-3 1.8E-2 1.1E-2 2.0E-2 6.8E-2 5.7E-2 6.9E-2
1500 3.5E-4 1.1E-4 1.4E-3 1.7E-2 1.0E-2 1.9E-2 6.6E-2 5.5E-2 6.7E-2
2000 3.2E-4 9.6E-5 1.3E-3 1.7E-2 1.0E-2 1.9E-2 6.4E-2 5.3E-2 6.6E-2
3000 2.6E-4 7.0E-5 1.1E-3 1.6E-2 9.2E-3 1.8E-2 6.2E-2 5.1E-2 6.5E-2

(d) Shrek

where the rv’s b
(0)
t and b

(a)
t describe the contributions to the number of customers in the system

at the beginning of time slot [t, t + 1) from those present at t = 0 and from the new arrivals,
respectively. We have

b
(a)
t =

t∑

s=1

Ys∑

i=1

1[σs,i > t− s] (19)
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and

b
(0)
t =

0∑
s=−∞

Ys∑

i=1

1[σs,i > t− s]. (20)

Invoking large deviation theory, we define

Λt(θ) ≡ 1
vt

ln E
[
eθt(S̃t−ct)

]
, θ ∈ R. (21)

where
θt ≡ θ

vt

t
.

where vt = − ln P[σ̂ > t] for which it is assumed that limt→∞ vt = ∞. The remaining of this
section is for finding the limit

Λ(θ) ≡ lim
t→∞Λt(θ). (22)

Note
S̃t =st St(in distribution), t = 0, 1, 2, · · · ,

where
S0 = 0, St = b1 + · · ·+ bt, t = 1, 2, · · · ,

Hense
Λt(θ) ≡ 1

vt
ln E

[
eθt(St−ct)

]
, θ ∈ R.

Theorem 1. Assume that
(1) limt→∞ vt/t = 0,
(2) E[σ2] < ∞ (⇔ E[σ̂] < ∞⇔ ∑∞

s=1 E[(σ − s)+] < ∞),
(3)

∑∞
t=1 P[σ̂ > t]α < ∞ for 0 < α < 1,

(4) {vt/t; t = 1, 2, · · · } is monotone decreasing,
(5) Y has an exponential moments, i.e., E[eθY ] < ∞ for θ > 0,
(6) E[σ̂] < ∞, and
(7) limt→∞ P[σ̂ > t]/P[σ > t] = ∞.

Then, for each θ 6= 1 in R, the limit Λ(θ) is given by

Λ(θ) =
{

(E[Y ]E[σ]− c)θ, if θ < 1
∞, if θ > 1 (23)

Proof of Theorem 1: From Lemma 1 through 9 in the Appendix, we have, for each θ ∈ R,

Λb(θ) ≡ lim
t→∞

1
vt

ln E
[
exp(

vt

t
θSt)

]
=

{
E[Y ]E[σ]θ, if θ < 1

∞, if θ > 1

Since
Λ(θ) = Λb(θ)− cθ,

(23) holds. ¤
Our goal is to approximate P[q0 > n] in an asymptotic manner. Let

Λ∗(z) ≡ sup
θ∈R

(θz − Λ(θ)), (z ∈ R). (24)
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Invoking [8], we have an upper bound

lim sup
n→∞

1
βnα

ln P[q0 > n] ≤ −γ∗, (25)

where
γ∗ = sup

y>0
min(f(y), g(y)) (26)

with the notation

f(y) = sup
θ>0

lim inf
n→∞

[
inf
x>y

{
βnα

β(nx)α
(θx− Λ(θ))

}]
(27)

and
g(y) = Λ∗(0)/yα. (28)

Let m = E[b] = E[Y ]E[σ]. We have

f(y) =

{
(c−m)1−α α−α

(1−α)1−α , if 0 < y ≤ α
1−α(c−m)

y1−α + (c−m)y−α, if y > α
1−α(c−m)

(29)

To compute min(f(y), g(y)), we have
(Case I) if y < (c−m)α(1− α)

1−α
α , min(f(y), g(y)) = (c−m)1−α α−α

(1−α)1−α ,

(Case II) if y > (c−m)α(1− α)
1−α

α , min(f(y), g(y)) = y−α(c−m).
Consequently, we obtain

γ∗ = (c−m)1−α α−α

(1− α)1−α
. (30)

On the other hand, we have a lower bound

−γ∗ ≤ lim inf
n→∞

1
βnα

ln P[q∞ > n], (31)

where γ∗ = infy>0 Λ∗(y)/yα. It is calculated as

γ∗ = inf
y>0

[
1
yα
· sup

θ∈R
{θy − Λ(θ)}

]

= inf
y>0

{
1
yα

(y + c−m)
}

= (c−m)1−α α−α

(1− α)1−α
. (32)

Finally, we have
γ(c) ≡ γ∗ = γ∗ (33)

as a function of output link rate, and, from (25) and (31),

lim
n→∞

1
βnα

ln P[q∞ > n] = −γ(c). (34)
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The above equation can be utilized as an overestimation of packet loss ratio for a queueing
system with GeoY /G/∞ input processes, when we implement video transmission systems. An
overestimation of PLR gives a conservative result which guarantees given quality of service
levels in terms of packet loss ratio.

5. CONCLUSION

We have proposed and analyzed a GeoY /G/∞ input process to model video traffic. Our
proposed model effectively characterize the video traffic in the aspect of marginal distribution
and autocorrelation and yet tractable in queueing analysis. With four full-length video traces
including action movies, a drama, and an animation, we evaluate the modeling performance in
terms of packet loss ratio. GeoY /G/∞ model is observed to consistently provide conservative
performance predictions within acceptable error at various traffic loads. For real-time imple-
mentation of our model, we analyze G/D/1/K queueing systems with GeoY /G/∞ input process
to upper estimate the packet loss probabilities.
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APPENDIX A. APPENDIX

Lemma 1. For t = 1, 2, · · · ,
(i) St = S

(0)
t + S

(a)
t where S

(0)
t ≡ ∑t

i=1 b
(0)
i and S

(a)
t ≡ ∑t

i=1 b
(a)
i

(ii)

ln E
[
eθS

(0)
t

]
=

∞∑

s=1

ln E
[

E
[
eθ((σ−s)+∧t)

]Y
]

(35)



VIDEO TRAFFIC MODELING 183

(iii)

ln E
[
eθS

(a)
t

]
=

t∑

s=1

ln E
[

E
[
eθ(σ∧s)

]Y
]

. (36)

where (x ∧ y) = min(x, y).
Proof of Lemma 1: (i) is trivial. For (iii), refer to [7]. (ii) is shown as follows:

S
(0)
t =

t∑

r=1

0∑
s=−∞

Ys∑

i=1

1[σs,i > r − s]

=
0∑

s=−∞

Ys∑

i=1

t∑

r=1

1[σs,i > r − s]

=
0∑

s=−∞

Ys∑

i=1

t−s∑

l=1−s

1[σs,i > l]

=
0∑

s=−∞

Ys∑

i=1

min{(σ + s− 1)+, t}

=
∞∑

m=1

Ym∑

i=1

(
(σ −m)+ ∧ t

)
. ¤

Lemma 2. If θ ≤ 0,

lim
t→∞

1
vt

ln E[eθtS
(a)
t ] = E[Y ]E[σ]θ. (37)

Proof of Lemma 2: For each t = 1, 2, · · · , we have θt ≤ 0 and

1
vt

ln E[eθtS
(a)
t ] =

1
vt

t∑

s=1

ln E
[

E
[
eθt(σ∧s)

]Y
]

≥ t

vt
ln E

[
E

[
eθtσ

]Y
]

= θ · ln E[E[eθtσ]Y ]
θt

.

For a nonnegative rv X , it is known that limθ↑0 ln E[eθX ]/θ = E[X]. Thus we have

lim inf
t→∞

1
vt

ln E
[
eθtS

(a)
t

]
≥ θE[σ1 + · · ·+ σY ]

= θE[Y ]E[σ].
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Let M be a positive integer. For t > M ,

1
vt

ln E[eθtS
(a)
t ] =

1
vt

t∑

s=1

ln E
[

E
[
eθt(σ∧s)

]Y
]

≤ 1
vt

t∑

s=M

ln E
[

E
[
eθt(σ∧M)

]Y
]

=
t−M + 1

vt
ln E

[
E

[
eθt(σ∧M)

]Y
]

=
t−M + 1

t
· θ · ln E[E[eθt(σ∧M)]Y ]

θt

=
t−M + 1

t
· θ · ln E[eθt[(σ1∧M)+···+(σY ∧M)]]

θt

Thus we have

lim sup
t→∞

1
vt

ln E[eθtS
(a)
t ] ≤ θE[Y ]E[σ ∧M ].

Letting M →∞ leads to

lim sup
t→∞

1
vt

ln E[eθtS
(a)
t ] ≤ θE[Y ]E[σ]. ¤

Lemma 3. If (i) θ ≤ 0, (ii) limt→∞ vt/t = 0, and (iii) E[σ2] < ∞, then

lim
t→∞

1
vt

ln E[eθtS
(0)
t ] = 0. (38)
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Proof of Lemma 3: For each t = 1, 2, · · · ,

− 1
vt

ln E
[
eθtS

(0)
t

]
= − 1

vt

∞∑

s=1

ln E
[

E
[
eθt((σ−s)+∧t)

]Y
]

≤ − 1
vt

∞∑

s=1

E
[
ln E

[
eθt((σ−s)+∧t)

]Y
]

= − 1
vt

∞∑

s=1

E[Y ] ln E
[
eθt((σ−s)+∧t)

]

≤ − 1
vt

∞∑

s=1

E[Y ]E
[
θt((σ − s)+ ∧ t)

]

=
E[Y ](−θt)

vt

∞∑

s=1

E
[
(σ − s)+ ∧ t

]

≤ E[Y ](−θt)
vt

∞∑

s=1

E
[
(σ − s)+

]

→ 0 (as t →∞). (39)

from the fact that E[σ2] < ∞⇐⇒ E [(σ − s)+] < ∞. ¤
Lemma 4. If (i) 0 < θ < 1, (ii)

∑∞
t=1 P[σ̂ > t]1−θ < ∞, and (iii) {vt/t, t = 1, 2, · · · } is

monotone decreasing, then

lim
t→∞

E[eθt(σ∧t)]− 1
θt

= E[σ]. (40)

Proof of Lemma 4: Let M > 1. Since P[σ > x] ≥ E[σ]P[σ̂ > bxc], for x ≥ 0 and t such that
eθt ≤ M ,

P[σ > x]eθtx1[x < t] ≤ E[σ]P[σ̂ > bxc]eθtbxceθt1[x < t]

= E[σ]e−vbxcebxcθteθt1[x < t]

= E[σ]e−vbxcebxcθvt/teθt1[x < t]

≤ E[σ]e−vbxceθvbxceθt1[x < t]

≤ E[σ] (P[σ̂ > bxc])1−θ M.

Since
∫∞
0 E[σ] (P[σ̂ > bxc])1−θ Mdx < ∞, by Lebesgue’s dominated convergence theorem

(LDCT)

lim
t→∞

∫ ∞

0
P[σ > x]eθtx1[x < t]dx =

∫ ∞

0
P[σ > x]dx

= E[σ]. (41)
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On the other hand,

E[eθt(σ∧t)]− 1
θt

= E
[∫ σ∧t

0
eθtxdx

]

= E
[∫ t

0
1[σ > x]eθtxdx

]

=
∫ t

0
P[σ > x]eθtxdx. (42)

By (41) and (42), the proof is completed. ¤
Lemma 5. If (i) 0 < θ < 1, (ii) {vt/t, t = 1, 2, · · · } is monotone decreasing, and (iii) Y has
an exponential moment, i.e., E[eθY ] < ∞ for θ > 0, then

lim sup
t→∞

1
vt

ln E
[
eθtS

(a)
t

]
≤ E[Y ]E[σ]θ. (43)

Proof of Lemma 5: For each t = 1, 2, · · · ,

1
vt

ln E
[
eθtS

(a)
t

]
=

1
vt

t∑

s=1

ln E
[

E
[
eθt(σ∧s)

]Y
]

≤ t

vt
ln E

[
E

[
eθt(σ∧t)

]Y
]

= θ
1
θt

ln E
[

E
[
eθt(σ∧t)

]Y
]

= θ · E[eθt(σ∧t)]− 1
θt

· ln E
[
E[eθt(σ∧t)]Y

]

E[eθt(σ∧t)]− 1
. (44)

By Lemma 4, E[eθt(σ∧t)] → 1 as t →∞. Hence

lim
t→∞

ln E
[
E[eθt(σ∧t)]Y

]

E[eθt(σ∧t)]− 1
= lim

x→1

ln E[xY ]
x− 1

= E[Y ]. (45)

By Lemma 4, (44) and (45), the proof is completed. ¤
Lemma 6. If θ > 0,

lim inf
t→∞

1
vt

ln E
[
eθtS

(a)
t

]
≥ E[Y ]E[σ]θ. (46)
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Proof of Lemma 6: Let M be a positive integer. For t ≥ M ,

1
vt

ln E
[
eθtS

(a)
t

]
=

1
vt

t∑

s=1

ln E
[

E
[
eθt(σ∧s)

]Y
]

≥ 1
vt

t∑

s=M

ln E
[

E
[
eθt(σ∧M)

]Y
]

=
t−M + 1

vt
ln E

[
E

[
eθt(σ∧M)

]Y
]

≥ t−M + 1
vt

E[Y ] ln E
[
eθt(σ∧M)

]

=
t−M + 1

t
E[Y ] · θ · ln E

[
eθt(σ∧M)

]

θt
.

Hence
lim inf
t→∞

1
vt

ln E
[
eθtS

(a)
t

]
≥ θE[Y ]E[σ ∧M ].

Letting M →∞ completes the proof. ¤
Lemma 7. If (i) 0 < θ < 1, (ii) {vt/t, t = 1, 2, · · · } is monotone decreasing in the limit, (iii)
Y has an exponential moment, and (iv) E[σ̂] < ∞, then

lim
t→∞

1
vt

ln E
[
eθtS

(0)
t

]
= 0. (47)

Proof of Lemma 7: Since, for each t = 1, 2, · · · , 1
vt

ln E[eθtS
(0)
t ] ≥ 0, it suffices to show

lim sup
t→∞

1
vt

ln E
[
eθtS

(0)
t

]
= lim sup

t→∞
1
vt

∞∑

s=1

ln E
[

E
[
eθt((σ−s)+∧t)

]Y
]

= 0.

First we note that
E

[
eθt((σ−s)+∧t)

]
≥ 1

and
E

[
eθt((σ−s)+∧t)

]
≤ E

[
eθt(σ∧t)

]
→ 1 (as t →∞).

Since

lim
x↓1

ln E[xY ]
x− 1

= E[Y ],

for 1 < x < 1 + δ with sufficiently small δ, we have ε > 0 such that

ln E[xY ] < (E[Y ] + ε)(x− 1).

Thus, for sufficiently large t,

ln E
[

E
[
eθt((σ−s)+∧t)

]Y
]

< (E[Y ] + ε)
(

E
[
eθt((σ−s)+∧t)

]
− 1

)
,
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and it suffices to show

1
vt

∞∑

s=1

(
E

[
eθt((σ−s)+∧t)

]
− 1

)
→ 0 as t →∞.

We have

1
vt

∞∑

s=1

E
[
eθt((σ−s)+∧t) − 1

]
=

1
vt

∞∑

s=1

θtE

[∫ (σ−s)+∧t

0
eθtx

]
dx

=
1
vt

∞∑

s=1

θt

∫ t

0
P[σ − s > x]eθtxdx

=
θt

vt

∫ t

0

∞∑

s=1

P[σ > x + s]eθtxdx

=
θt

vt

∫ t

0

( ∞∑

s=0

P[σ > x + s]− P[σ > x]

)
eθtxdx

=
θ

t

(∫ t

0
P[σ̂ > x]eθtxdx−

∫ t

0
P[σ > x]eθtxdx

)

=
θ

t

(∫ ∞

0
P[σ̂ > x]1[x < t]eθtxdx−

∫ ∞

0
P[σ > x]1[x < t]eθtxdx

)

→ 0 as t →∞, (48)

because, by LDCT,

lim
t→∞

∫ ∞

0
P[σ̂ > x]1[x < t]eθtxdx = E[σ]E[σ̂] < ∞

and

lim
t→∞

∫ ∞

0
P[σ > x]1[x < t]eθtxdx = E[σ] < ∞. ¤

Lemma 8. If (i) θ > 1 and (ii)

lim
t→∞

P[σ̂ > t]
P[σ > t]

= ∞,

then

lim
t→∞

1
vt

ln E
[
eθtSt

]
= ∞. (49)
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Proof of Lemma 8: From Lemma 1,

1
vt

ln E
[
eθtSt

]
≥ 1

vt

∞∑

s=1

ln E
[

E
[
eθt((σ−s)+∧t)

]Y
]

+
1
vt

ln E
[

E
[
eθt(σ∧t)

]Y
]

=
1
vt

∞∑

s=0

ln E
[

E
[
eθt((σ−s)+∧t)

]Y
]

≥ E[Y ]
vt

∞∑

s=0

ln E
[
eθt((σ−s)+∧t)

]

=
E[Y ]
vt

∞∑

s=0

ln
(

1 + θt

∫ t

0
P[σ > s + x]eθtxdx

)

≥ E[Y ]
vt

∞∑

s=0

ln
(

1 + θtP[σ > s + t]
∫ t

0
eθtxdx

)

=
E[Y ]
vt

∞∑

s=0

ln
(
1 + P[σ > s + t]eθtt − P[σ > s + t]

)

≥ E[Y ]
vt

∞∑

s=0

[
ln

(
1 + P[σ > s + t]eθtt

)
− P[σ > s + t]

]

≥ E[Y ]
vt

∞∑

s=0

ln(1 + P[σ > t]eθtt)
P[σ > t]eθtt

P[σ < s + t]eθtt − E[σ]
vt

P[σ̂ > t]

= E[Y ]
E[σ]
vt

ln(1 + P[σ > t]eθtt)
P[σ > t]eθtt

P[σ̂ > t]eθtt − E[σ]
vt

P[σ̂ > t]

= E[Y ](θ − 1)E[σ]
P[σ̂ > t]eθtt

ln(P[σ̂ > t]eθtt)
ln(1 + P[σ > t]eθtt)

P[σ > t]eθtt
− E[σ]

vt
P[σ̂ > t]

→ ∞ as t →∞, (50)

by the following Lemma 9. ¤
Lemma 9. If we have sequence an and bn such that bn > 0, an → ∞, and an/bn → ∞ as
n →∞, then

lim
n→∞

an

bn

ln(1 + bn)
ln(1 + an)

= ∞,

and, hence,

lim
n→∞

an

bn

ln(1 + bn)
ln an

= ∞.

Proof of Lemma 9: If bn ≤ 1, then

an

bn

ln(1 + bn)
ln(1 + an)

≥ ln 2
an

ln(1 + an)
.
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Since limn→∞ an/ ln(1 + an) = ∞, we may assume that bn > 1 for all n. It is easy to see
that, for each z > 1, ln(1 + x)/ ln(1 + zx) is an increasing function of x. Hence, if an > 1

an

bn

ln(1 + bn)
ln(1 + an)

≥ an

bn

ln(1 + 1)
ln(1 + an/bn)

and, hence,

lim inf
n→∞

an

bn

ln(1 + bn)
ln(1 + an)

≥ ln 2
an/bn

ln(1 + an/bn)
→∞. ¤


