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ABSTRACT. In this paper, the negative Polya-Eggenberger distribution has been 
introduced by compounding negative binomial distribution with beta distribution 
of I-kind which generates a number of univariate contagious or compound (or 
mixture of) distributions as its particular cases. The distribution is unimode, over 
dispersed and all of its positive and negative integer moments exist. The 
difference equation of the proposed model shows that it is a member of the Ord’s 
family of distribution. Some of its interesting properties have been explored 
besides different methods of estimation been discussed. Finally, the parameters 
of the proposed model have been estimated by using a computer programme in 
R-software. Application of the proposed model to some data, available in the 
literature, has been given and its goodness of fit demonstrated. 

 
 

1. INTRODUCTION 
 

The Polya-Eggenberger distribution and its inverse negative Polya-Eggenberger 
distribution was introduced by Polya and Eggenberger [1] through an urn model. They 
described these distributions as truly contagious distribution. The other type such as 
Neyman’s contagious distribution [2] involves the “apparent contagion” as described by 
Feller [3]. The distribution in discussion has not been studied in detail so for. Though, its 
different parameterization is present in the literature. The first parameterization of the 
distribution is the beta-negative binomial distribution which is the generalization of hyper-
geometric distribution; see Johnson and Kotz’s [10] for details. Another parameterization   
is the generalized Waring distribution introduced by Irwin [9] as an accident proneness-
liability model which was subsequently applied by Irwin {[9], [14]} to data on accidents 
sustained by men in a soap factory. The negative Polya-Eggenberger distribution also 
belongs to Kemp and Kemp [6] generalized hyper-geometric distribution. 
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distribution in the same way as negative binomial distribution is related to binomial 
distribution. It is well known fact that the negative binomial distribution has become 
increasingly popular as a more flexible alternative to the Poisson distribution especially 
when it is doubtful whether the strict requirements particularly independence for a Poisson 
distribution will be stasfied.There are various extensions/modifications of NBD in the 
literature including Engen’s extended NBD {[13], [15]}, GNBD of Jain and Consul [12]  
and Weighted NBD; see Johnson et al. [16] for more details and explanations. 

In this paper, the proposed model has been obtained by compounding the negative 
binomial distribution with beta distribution of first kind. In Gurland's [7] terminology, the 
proposed model represents a generalization of the negative binomial distribution. It has 
been shown that the proposed model exhibits more flexible alternative model to negative-
binomial distribution and some of its generalizations. This has been demonstrated with the 
help of three data sets by the goodness of fit in the last section of this paper. 

The organization of the paper is as follows: in section 2, we derive the proposed model. 
Section 3 deals with some interesting structural properties of the proposed model. In 
section 4, we discuss its relation with other distributions. Section 5 proposes different 
methods of estimation. Finally, in section 6, the parameters of the proposed model have 
been estimated by using a computer programme in R-soft wear. Further, an application of 
the proposed model to three data sets has been given and its goodness of fit demonstrated. 

 
2. THE PROPOSED MODEL 

 
A certain mixture distribution arises when all (or some) parameters of a distribution vary 

according to some probability distribution called the mixing distribution. A well-known 
example of discrete-type mixture distribution is the negative-binomial distribution which 
can be obtained as a Poisson mixture with gamma distribution. 

Let X  has a conditional negative-binomial distribution with parameter p , that is, X  
has a conditional probability mass function (pmf) 

nx )p1(p
x    

1xn
)p/xX(P)p/X(P 






 

  for ,..2,1,0x   and 1p0  , (2.1) 0n

Now, suppose p is a continuous random variable with probability density function (pdf) 

11 )p1(p
),(

1)p(g   
  for 1p0  ,   0),(   (2.2) 

Bhattacharya [8] showed that the conditional pmf of X  is given by 

dp)p(g)p/x(f)xX(P)x(f
0
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The equation above together with (2.1) and (2.2) gives  
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Taking c
a  , c

b , the equation above reduces to the negative Polya-Eggenberger 

distribution with pmf 
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The proposed model (2.3) can be put into different forms for the mathematical convenience 

and to study some of its properties. The model (2.3) in terms of ascending factorials can be put 
as 

]c,xn[

]c,n[]c,x[1xn

x )ba(
ba

)xX(P 








 ,        for  ,.......2,1,0x  (2.4) 

Where )1.().........(],[ cxacaaa cx   
 
Another form of (2.3) can be 
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Where )1x)........(1(]x[    and c
a , c

b . The model represented by 

(2.5) has been seen the most workable model, used through out this paper, for the 
mathematical computations. 
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REMARKS: A number of special cases can be deduced from the proposed model (2.3) by 
assigning different set of values to its parameters. Some of the interesting cases deduced are 
negative-binomial distribution, beta–negative binomial distribution, negative hyper geometric 
distribution, geometric series distribution, Bernoulli-delta distribution (geometric) etc. 

 
3. STRUCTURAL PROPERTIES 

 
In this section, some of the interesting properties of the proposed model has been explored 

which are described as follows; 
3.1 RECURRENCE RELATION BETWEEN PROBABILITIES 
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Expressing the pmf of the proposed model (2.5) as 
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Taking in the equation above and dividing the resulting equation by (3.1), we get 
the recurrence relation of the proposed model as 
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Which yields the difference equation of the proposed model as 
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The difference equation above exhibits that the proposed model is a member of the Ord’s 
family of distribution. 

 
3.2. UNIMODALITY 
 
The proposed model is a unimodal by the following result of Holgate [11]: 
 
LEMMA. If the mixing distribution is non-negative, continuous and unimodal then the 

resulting distribution is unimodal 
 
The proposed model is a unimodal since the mixing distribution is a beta distribution of I-

kind which is unimodal. To show the unimodality of the distribution we have the following 
theorem. 

Theorem 3.1. The proposed model is a unimodal for all values of ),,n(  and the mode is 

at  if 0x 1n   and for 1n   the mode is at some other point Mx   such that 
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Proof. The recurrence relation (3.2) gives the ratio 
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Which is less than one, that is, 

1
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 if 1n   0),,n(     

Hence, for 1n  , the ratio 
)x(P

)1x(P 
 is a non-increasing function, therefore, the mode of 

the proposed model exists at . Suppose for0x  1n   the mode exists at , then the 
ratio defined by (3.4) gives the two inequalities 
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By the inequality (3.5) we have 
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and the inequality (3.6) gives 
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)1)(1n(
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 (3.8) 

On combining the inequalities (3.7) and (3.8), we get the result (3.3). 
 
3.3. MEAN AND VARIANCE 
 
Mean and variance of the proposed model can be easily obtained by using the properties of 

conditional mean and variance as follows; 
 
MEAN: By the conditional mean we have 

 )pX(EE)X(EMean    (3.9) 

Where  )pX(E   is the conditional expectation of X given p and for given p the 
random variable X follows (2.1) with mean and variance given by 
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The equation (3.9) together with (3.10) and (2.2) gives mean of the proposed model as 
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n)X(E  
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VARIANCE: Similarly, by the conditional variance we have 

   )pX(EV)pX(VE)X(V    (3.11) 
Using (3.10) in the equation above, we get 
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By an application of beta integral, the equation above gives variance as 
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3.4. RECURRENCE RELATION BETWEEN MOMENTS 
 
The recurrence relation (3.2) gives 
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Which subsequently reduces to 
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Where  denotes the pmf of the proposed model with 

parameters

)1,1,1n(Px  
)1,1,1n(   . Summing (3.12) over the values of x  on both sides, we get the 

moment recurrence relation as 
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Where )1,1,1n(j    denotes the jth moment about origin of the proposed model 

with parameters )1,1,1n(   . The recurrence relation (3.13) gives the first four moments 
about origin as 
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Now, the central moments can be easily obtained from the moments about origin of the 
proposed model and are given by 
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The proposed model is over dispersed for 2  and its coefficient of variation is given by 
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3.5. PROBABILITY GENERATING FUNCTION 
 
Suppose  denotes the probability generating function of the proposed model then 

we have 
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Which yields the probability generating function of the proposed model as 
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Where ]u,n;,n[F12   is a Gaussian hypergeometric function. 

 
REMARKS: If we replace  by u )t1(   and )t1(  , the equation above yields the 

descending factorial moment and ascending factorial moment generating functions 
respectively. 

 
3.6. FACTORIAL MOMENTS 
 
The rth factorial moment about origin )r(  of the proposed model is defined as 
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Taking , the equation above yields the rth factorial moment of the proposed model 
as 
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The expression (3.14) can be used to obtain the factorial moments of the proposed model. 
 

3.7. NEGATIVE INTEGER FACTORIAL MOMENTS (NIFM) 
 
The negative moments are useful in many problems of applied statistics, especially in life 
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testing and in survey sampling, where ratio estimates are used. In this section, we obtained the 
expression for the rth negative integer ascending factorial moment of the proposed model in 
terms of Gaussian hypergeometric function. Suppose ][r  denotes the rth negative integer 

ascending factorial moment of the proposed mode then we have 
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Using the result above in (3.15), we get 
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Which gives the first four negative integer ascending factorial moment as 
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4. RELATION WITH OTHER DISTRIBUTIONS 

 
Theorem 4.1. Let X  be a negative Polya-Eggenberger variate with parameters 

),,( n .If   such that  and as  1 1n n  then show that X  

tends to a Poisson distribution with parameter  . 

Proof: Expressing the pmf of the proposed model as 
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Substituting 
n
   and taking limit n , the equation above reduces to the Poisson 

distribution with parameter . 
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Theorem 4.2. Let X  be a negative Polya-Eggenberger variate with parameters ),,n(  . 

Show that zero-truncated negative Polya-Eggenberger distribution tends to logarithmic series 

distribution. 

Proof: The pmf of the Zero-truncated negative Polya-Eggenberger distribution is 
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Substituting  and proceeding to limit 1  , we get 
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Proceeding to the limit , the equation above reduces to the logarithmic series 
distribution. 

0n

 
5. ESTIMATION 

 
5.1. MOMENT METHOD: 
 
Let  be the sample moments about origin and  be the population 

moments about origin of the proposed model. The method of moments consists in comparing 
the sample moments with the population moments of the proposed model, that is, 
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Using (5.1) in (5.2), we get 
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By comparing the third sample moment with its corresponding population moment, we get 
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The equation (5.4) together with (5.1) and (5.2) gives 
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Eliminating  and n   between (5.3) and (5.5), we get the estimate of   as 
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Substituting the value of  from (5.3) into (5.1), we get a quadratic equation in n   as 
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Which can be solved for . After estimating , e value of n  can be obtained either from 
(5.5

th
) or (5.1). 

.2. USING MEAN AND FIRST THREE CELL FREQUENCIES: 

quating the first three probabilities of the proposed model with their corresponding 

relative frequencies
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Dividing (5.6) by (5.7) and then using (5.1) in the resulting equation, we get 
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The equation (5.9) together with the result obtained above gives the estimate of   as 
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Substituting the value of from (5.10) into (5.1), we get a quadratic equation in n    as 

01(x)t(2 

   )

Which can be used to estimate . The estimate of n can be obtained from (5.10) or (5.1). 
 
5.3. MAXIMUM LIKELIHOOD METHOD: 
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Converting t  equation above in terms of gamma functions, we get he likelihood
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The differentiation of the equation above is not straight f
he
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The three likelihood equations are not simple to provide direct solution, however, different 
iterative procedures such as Fisher’s scoring method, Newton-Rampson method etc. can be 
employed to solve these equations. We may solve the following system of equations 
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Where ),,n(  


 is a parameter vector, is the ML estimate of   and is the trial 

value of 
0

  which may be first obtained by equating the theoretical frequencies with the 
observed frequencies. 

 
6. CHI-SQUARE FITTING 

 
In this section, we present three data sets to examine the fitting of the proposed model and 

comparing that with the negative binomial distribution and generalized negative binomial 
distribution defined by Jain and Consul [12]. 

As mentioned in the previous section, the maximum likelihood equations are not 
straightforward to provide the maximum likelihood (ML) estimates of the parameters of the 
proposed model and thus need some iterative procedure such as Fisher’s scoring method, 
Newton-Rampson method etc. for their solution. The R-soft wear provides one among such 
solutions. The parameters have been estimated with the help of a computer program in R-soft 
wear and has been shown in the bottom of the table. 

 
TABLE.1. Absenteeism among shift-workers in steel industry; data of Arbous and Sichel [5] 

Expected  frequencies  

Count 

 

Observed 
frequency 

NBD Jain and    
Consul’s[12]    

GNBD 

Proposed model   
NPED 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 07 07.80 16.83 6.94 

7 
16 
23 
20 
23 
24 
12 
13 
09 
09 
08 
10 
08 

12.02 
16.16 
17.77 
18.08 
17.65 
16.80 
15.72 
14.52 
13.28 
12.06 
10.89 
09.78 
08.75 

10.51 
17.45 
20.38 
20.80 
19.88 
18.34 
16.56 
14.78 
13.08 
11.53 
10.13 
08.89 
07.79 

9.53 
15.93 
19.06 
19.92 
19.41 
18.17 
16.59 
14.90 
13.25 
11.71 
10.30 
9.04 
7.92 
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25-48 

14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

02 
12 
03 
05 
04 
02 
02 
05 
05 
02 
01 
16 

06.93 
06.14 
05.43 
04.79 
04.22 
03.17 
03.23 
02.86 
02.50 
02.91 
01.91 
12.77 

05.99 
05.26 
04.61 
04.05 
03.56 
03.14 
02.76 
02.43 
02.15 
01.90 
01.68 
13.50 

6.08 
5.33 
4.68 
4.12 
3.63 
3.20 
2.83 
2.50 
2.22 
1.97 
1.75 

17.02 
TOTAL 248 248 248 248 

M

χ
d. f 

p=  L Estimate 
 
 
2 

 0.854
576.1n  
 

14.92 

p=0.0 77 

17 

0010
 =5978.528 
n=

n=14 954     

29337.083 
27.79 

16 

.962
α=2.492821     
γ=4.852530 

10.20 
16 

TABLE 2. The data has been taken from Beall-Rescia [4], Table VII 

Expected  frequencies  

Count 

 

Observed NBD 
Co

Proposed 
frequency 

Jain and    
nsul’s[12]    
GNBD 

model   
NPED 

0 206 198.85 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 

143 
128 
107 
71 
36 
32 
17 
4 
7 
7 
2 
3 
3 
1 
1 
1 
2 
1 

166.90 
124.33 
88.70 
61.89 
42.60 
29.05 
19.68 
13.27 
8.91 
5.96 
3.98 
2.65 
1.76 
1.17 
0.78 
0.51 
0.34 
0.22 

197.64 
168.45 
125.12 
88.73 
61.56 
42.19 
28.71 
19.45 
13.13 
8.85 
5.96 
4.00 
2.69 
1.81 
1.21 
0.82 
0.55 
0.37 
0.25 

196.16 
170.06 
126.35 
89.08 
61.32 
41.71 
28.21 
19.04 
12.84 
8.67 
5.87 
3.98 
2.71 
1.85 
1.27 
0.87 
0.60 
0.42 
0.29 



94                         ANWAR HASSAN AND SHEIKH BILAL 

 

 

19 0 0.45 0.51 0.70 
TOTAL 772 772 772 772 

M

χ  

n=1 14   

18.27 

n=1.4 33 L Estimate 
 
 
2

d. f 

 .29033
p=0.6504948 

 

9 

3926
 =1.0347577 
p

n= 4 373 

=0.6119716 
18.18 

8 

5.146
α=1.429784 
γ=27.880158 

17.68 
8 

TABLE 3. Accidents to 647 women working on H.E. Shells during 5 weeks 

Expected  frequencies  

Count Observed NBD 
C

Proposed 

 

frequency 
  Jain and    
onsul’s[12] 

GNBD 
model   
NPED 

0 447 445.89 
1 
2 
3 
4 
5 

132 
42 
21 
3 
2 

134.90 
44.59 
14.09 
4.96 
2.57 

445.17 
136.76 
43.09 
14.27 
4.93 
2.78 

445.58 
135.88 
43.41 
14.40 
4.94 
2.79 

TO L  TA 647 647 647 
M

χ

n= 12 

4.46 

n= 8 7 L Estimate 
 
 
2 

d. f 

 0.865
p=0.34969 

 

2 

.2636
 =4.84301 
p

n=1  

=0.04424 
4.32 

1 

7.78681
α=  0.98208
γ=38.51329 

4.15 
1 

 
rom all the tables it is clear that the proposed model gives a very close fit as compared to 

ot
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