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CONVECTION IN A STEADY STATE CHIMNEY

Young-Kyun Yang

Abstract. We present an axisymmetric model containing only one
chimney to study how convection affects the flow in a steady state
chimney. We find that the mass fraction of solid in a mush and the
depth of a mush when the strength of convection is given. We use
the knowledge of the variables in the mush to find the fluid flow in
the chimney Our procedure employs the von Kármán-Pohlhausen
technique for determining chimney flow and makes use of the fact
that the radius of the chimney is much less than the thickness of the
mush.

1. Introduction

When binary mixtures are cooled and directionally solidified, a mushy
layer comprising a solid matrix of crystals with interstitial liquid com-
monly forms between the melt and solid regions (Copley et al.1970).
These mushy layers are the result of a supercooling induced morpholog-
ical instability of the solidification front (Mullins & Sekerka 1964).

Copley et al.(1970) reported experiments in which they had cooled
and crystallized from below aqueous solutions of ammonium chloride.
The authors found that convection of buoyant fluid from the interstices
of the mushy layer, which formed as crystals of ammonium chloride grew
at the base of the container, took the form of narrow, vertical plumes
rising through crystal-free vents or ‘chimneys’ in the dendritic matrix.
They suggested that these convectively formed chimneys are the cause
of the ‘freckles’ that are often observed in castings of steel and binary
alloy systems such as aluminum-copper, lead-tin and nickel-aluminum.

Freckles are imperfections that interrupt the uniformity of the mi-
crostructure of a casting, causing areas of mechanical weakness. Both
because of the metallurgical importance and the pure scientific interest,
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a prized goal is a thorough understanding of the phenomena observed
in aqueous NH4Cl (Huppert, 1990). Furthermore, there are possible ap-
plications to the formation of the solid inner core of the Earth (Roberts
& Loper, 1983), the evolution of magma chambers due to the pipes in
geological systems (Tait & Jaupart, 1991), and the sulphide mineral
zonation of black smoker chimney walls (Haymon, 1983).

Some previous numerical computations of convection in mushy layers
have been conducted based on a single Darcy-Brinkman formulation for
the combined mushy, liquid and chimney regions (Felicelli et al, 1991).
Though chimneys have been found in these studies, they have not been
highly resolved numerically. An alternative approach is to concentrate
on a steady-state systems and to treat the mushy and the liquid re-
gions in separate domains. The fluid motion within the mushy region
is modeled by Darcy’s equation, while that in the liquid region is mod-
eled in general by the Navier-Stokes equations. It is then necessary
to match the thermodynamic and fluid-mechanical variables across the
mush-liquid interfaces, the position of which also need to be determined
as part of the overall solution. Moreover, the chimney wall is itself a free
boundary, which must be determined.

Hills, Loper & Roberts (1983) developed a set of governing equations
for a mushy zone, based on principles of diffusive mixture theory, and
solved a one-dimensional freezing problem. We use simplified version
of this complete model for a mushy zone. Roberts $ Loper (1983) used
lubrication theory to model the flow through a chimney of prescribed
uniform cross-section and analyzed some aspects of the flow in the mushy
layer around the chimney. Worster (1991) analyzed the structure of a
convecting mushy layer by seeking solutions in the asymptotic regime
Rm >> 1, where Rm is an appropriately defined Rayleigh number. In
his analysis, he estimated the volume flux through a chimney by using a
type of Pohlhausen method, and related the flux to the vertical downflow
of the mushy layer by global mass conservation. Therefore, he achieved
an expression for the vertical flow W of the mush in terms of the single
parameter F which denotes the strength of convection. He showed that
increasing the strength of convection reduces the depth of the mush and
increases the solid fraction.

We also parameterize the strength of convection and obtain similar re-
sults; the thickness of the mush decreases and the solid fraction increases
when the strength of convection increases. Unlike Worster (1991), we
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analyze first the structure of the mush, and we find solutions of the tem-
perature, the solid fraction, and the pressure in the chimney wall. Our
pressure expression shows that the pressure in the chimney can be large
when the permeability of the chimney wall is small.

The purpose of this study is to analyze the flow of a mush-chimney
system by developing a simple model having convection with horizontal
divergence. We study how convection affects the mass fraction of the
solid, the thickness of the mush, the radius of a chimney and the num-
ber density of chimneys. With knowledge of composition, velocity, and
pressure obtained from the mush, we find the radius of the chimney and
analyze the fluid flow in a chimney by using the von Karman Pohlhausen
technique.

2. Mathematical formulation for a mush-chimney system

We consider an axisymmetric model of a mush-chimney system con-
taining only one chimney. We assume the system to be steady in a frame
fixed to the mush-solid interface, which moves upward relative to the
solid with a prescribed constant speed V . The liquid region has fixed
temperature T∞ and composition ξ∞ of light constitutent as z → ∞,
where z measures vertical displacement in the moving frame. The tem-
perature decreases downward, and we consider the case in which a mushy
zone separates a completely solid region from a completely liquid region.
In this model problem we assume that the eutectic front, at which the
temperature is equal to the eutectic temperature Te and below which the
system is completely solid, can be maintained at the fixed position z = 0.
The mush-liquid interface z = h is a free boundary to be determined as
part of the solution. We nondimensionalize the governing equations by
choosing a thermal length scale κ/V and thermal time scale κ/V 2, where
κ is the thermal diffusivity κ = k/ρrcp, cp is the specific heat, k is the
thermal conductivity, and ρr is a reference density. Specifically, put
x = (κ/V )x∗, w = V w∗, p = κη/γop

∗, γ = γoγ
∗, T − Tr = (Tr − Te)T

∗,
ξ − ξ∞ = (ξe − ξ∞)ξ∗, where γo is a reference value of the permeability
of the mush, η is the dynamic viscosity of the liquid, Tr is the liquidus
temperature of ξ∞ and ξe is the eutectic composition of light constitu-
tent. Dropping the asterisks, conservation of total mass, conservation
of a constitutent in the liquid phase and energy, the liquid momentum
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equation and the liquid relation, respectively, become

(1) ∇ ·w = 0,

(2) w.∇ξ =
∂ξ

∂z
− ∂(φξ)

∂z
− C

∂φ

∂z
,

(3) w · ∇T = ∇2T +
∂T

∂z
− S

∂φ

∂z
,

(4)
w

γ(φ)(1− φ)2
+∇p + RaTz = 0,

(5) T = −ξ,

where φ is the mass fraction of solid, z is the unit upward vector. The
parameters are a Stefan number S = L/cp(Tr − Te), which represents
the ratio of the latent heat needed to melt the solid and the heat needed
to warm the solid from its eutectic temperature to the reference temper-
ature Tr, the ratio of composition C = ξ∞/(ξe− ξ∞), which denotes the
compositional contrast between solid and liquid phases compared to the
typical variations of concentration within the liquid (Worster, 1991), and
a Rayleigh number Ra = γoρr(β − αΓ )g(Tr − Te)/V ηΓ , which will act
to drive buoyancy induced convection in the mush if it is large enough,
where L is the latent heat, Γ is the liquidus slope, g is the gravity, α and
β, are constant coefficients of thermal and compositional expansion. Let
(r, θ, z) be cylindrical coordinates with z upwards. We assume within
the main body of the mush that the vertical velocity w, the temperature
T , the mass fraction of light constitutent ξ and the mass fraction of solid
φ, depend on z only. Then the governing equations for the mush are

(6)
∂(rum(r, z))

∂r
− ∂(rwm(z))

∂z
= 0

(7) −wm(z)T ′
m(z) = T ′

m(z)− (φm(z)Tm(z))′ + Cφ′m(z)

(8) −wm(z)T ′
m(z) = T ′′

m(z) + T ′
m(z)− Sφ′m(z)

(9)
um(r, z)

F (φm(z))
+

∂pm(r, z)

∂r
= 0,

(10)
−wm(z)

F (φm(z))
+

∂pm(r, z)

∂z
+ RaTm(z) = 0,



Convection in a steady state chimney 195

(11) Tm(z) = −ξm(z),

where the subscripts ‘m’ represents the mush, prime ′ denotes the de-
rivative with respect to z, and F (φm) = (1 − φm)5 for Worster’s choice
(1991). Note that very large Lewis number Le = κ/Do is assumed in
equation (23), where Do is the compositional diffusivity in the liquid.
From the above equations, we obtain the set of equations involving vari-
ables Tm(z), φm(z) and wm(z):

(12) T ′
m = (C + S − Tm)φm + H ,

(13) φ′m =
T ′

m

Tm − C
(1 + wm − φm),

(14) w′
m = W F (φm),

(15) pm(r, z) = pa(z) + pb(r),

with the boundary conditions

(16) Tm(h0) = 0, φm(h0) = 0, Tm(0) = −1, wm(0) = 0,

where h0 is a constant mush-liquid interface away from the chimney
wall, as suggested by the experiments of ammonium chloride solution
(Roberts & Loper (1983), Chen & Chen (1991)), H = T ′(h0) measures
the amount of superheat and W = w′(h0).

We now introduce the governing equations for a chimney, and nondi-
mensionalize them by using the same scales as in the mush. We rewrite
the equations for a steady state in a reference frame moving steadily
upward with the speed V and rescale the velocity in the chimney by
balancing fluxes of the mush and the chimney. We assume that the
thickness of the mush h0 = 0(1) and the Prandtl number σ >> R2 since
σ ∼ 10 (Emms & Fowler (1994) and Hellawell et . al . (1993)) for NH4Cl-
H2O and R is less than or equal to h0 (Roberts & Loper, 1983). We
derive simplified equations for a model of the chimney with the approx-
imation a(z) << h0 and R2/a2

h >> 1, where ah is the radius of the top
of the chimney.

The governing equations in the chimney are

(17) ∇ · uc = 0,

(18)
DTc

Dt
= κ∇2Tc,
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(19)
Dξc

Dt
= D0∇2ξc,

(20) ρr
Duc

Dt
= −∇pc + (ρl − ρr)ẑ + η∇2uc,

(21) ρl = ρr[1− α(Tc − Tr)− β(ξc − ξr)],

where the subscripts ′c′ represents the chimney, κ and D0 are the thermal
and material diffusivity, respectively, D/Dt = ∂/∂t+uc ·∇ is the mate-
rial derivative following the fluid element, ρr is the reference density, η
is the dynamic viscosity of the liquid, pc is the nonhydrostatic pressure
field, α and β are the constant coefficients of thermal and compositional
expansion.

As before, we nondimensionalize the governing equations in the chim-
ney by using a thermal length scale κ/V , thermal time scale κ/V 2,
and velocity scale V . We put t = κ/V 2t∗, x = κ/V x∗, uc = V uc

∗,
pc = κη/γ0p

∗
c , Tc − Tr = (Tr − Te)T

∗
c , and ξc − ξ∞ = (ξe − ξ∞)ξ∗c , where

Tr is the liquidus temperature of ξ∞, and Te and ξe are the eutectic
temperature and composition. Dropping the asterisks,

(22) ∇ · uc = 0,

(23)
DTc

Dt
= ∇2Tc,

(24)
Dξc

Dt
=

1

Le
∇2ξc,

(25)
1

σ

Duc

Dt
= −∇pc

δ
+ (RαTc + Rβξc)ẑ +∇2uc,

where

δ =
γ0V

2

κ2

is a measure of dendritic spacing,

σ =
η

ρrκ

is the Prandtl number,

Le =
κ

D0
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is the Lewis number,

Rα =
α(Tr − Te)gγ0ρr

ηV δ

and

Rβ =
β(ξe − ξ∞)gγ0ρr

ηV δ

are the thermal and compositional Rayleigh number, respectively.
We rewrite (23), (24) and (25) in a reference frame moving steadily

upward with the solidification speed V as follows:

(26) uc · ∇Tc =
∂Tc

∂z
+∇2Tc,

(27) uc · ∇ξc =
∂ξc

∂z
+

1

Le
∇2ξc,

(28)
1

σ
[−∂uc

∂z
+ (uc · ∇)uc] = −∇pc

δ
+ Rβξcẑ +∇2uc.

Note that in the chimney, since the compositional buoyancy dominates
the thermal buoyancy, in (28) we have neglected the thermal contribu-
tion to the buoyancy force. Therefore, the energy equation (26) is not
important in our analysis.

We balance the fluxes of the mush and the chimney. Then we have
w̄ca

2
h = wmR2, where w̄c is the average velocity over z-cross section.

If we assume that wm = O(1), we obtain w̄c = O(R2

a2
h
).

We scale the radius and the velocity of the chimney as the following:

r = ahs, uc =
R2

ah

us, wc =
R2

a2
h

ws,

where uc = (uc, wc).
We now write equations (22), (27) and (28) in a scaled form.

(29)
1

s

∂

∂s
(sus) +

∂ws

∂z
= 0,

(30)
R2

a2
h

Dsξc =
∂ξc

∂z
+

1

a2
hLe

[
1

s

∂

∂s
(s

∂ξc

∂s
) +

∂2ξc

∂z2
],

(31)
R4

a3
h

1

σ
(− a2

h

R2

∂us

∂z
+ Dsus) = − 1

ahδ

∂pc

∂s
+

R2

a3
h

∇2
sus,
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(32)
R4

a4
h

1

σ
(− a2

h

R2

∂ws

∂z
+ Dsws) = −1

δ

∂pc

∂z
+ Rβξc +

R2

a4
h

∇2
sws,

where

Ds = us
∂

∂s
+ ws

∂

∂z
, ∇2

s =
1

s

∂

∂s
(s

∂

∂s
) + a2

h

∂2

∂z2
.

We obtain our model by utilizing the fact that ah << h0 and R2 >>
a2

h, and assuming h0 = O(1). Also, we assume σ >> R2. Then we may
neglect the inertia term compared to the viscous term in (31) and (32).
Furthermore, if we use the data of the ammonium-chloride experiment,
δ ∼ 10−4 (Emms & Fowler, 1994) and R ∼ 10ah (Hellawell et . al ., 1993),
we obtain from (31)

(33) pc = pc(z).

Also, equations (30) and (32) simplify to

(34) us
∂ξc

∂s
+ ws

∂ξc

∂z
= 0,

(35) 0 = −1

δ

dpc

dz
+ Rβξc +

R2

a4
h

[
1

s

∂

∂s
(s

∂ws

∂s
)].

Note that we used in (34) the fact that Le >> 1 in most liquids. We
analyze our model consisting of (29), (33), (34) and (35) with boundary
conditions on the chimney wall

(36) < p >= 0, < ξ >= 0, < u >= 0, wc = 0.

where, ′ <>′ represents a jump condition on the chimney wall.

3. Convection in a steady-state chimney

In this section, we find that the mass fraction of solid in a mush and
the depth of a mush when the strength of convection is given. Also, we
analyze the fluid flow in a chimney and find the equation for the radius
of the chimney by using the von Karman Pohlhausen technique.

From equation (12), we know that dT/dz > 0 Now we let T ′ = X(T ),
φ = Y (T ), and w = Z(T ). From equations (12), (13) and (14), we
obtain

(37)
dY

dT
=

1 + Z − Y

T − C
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(38)
dZ

dT
=

W (1− Y )5

(C + S − T )Y + H

with conditions

(39) Y (0) = 0, Z(−1) = 0.

We have five parameters; wh = w(h0), V = w′(h0), measures of con-
vection; S, a Stefan number ; C, the ratio of composition ; H = T ′(h0),
a measure of superheat. From the linear liquidus equation T = Tr−Γ(ξ−
ξ∞), we have S = L(1 + C)/cpΓ ξe, and H = (T∞ − Tr)(1 + C)(1 + wh)/Γ ξe.
Both C and S are experimentally controllable parameters, H depends
on C and wh, while H, wh and V are internal parameters. But, since H
depends on wh, we actually have two internal parameters in our math-
ematical system. Given wh, the value of V is determined numerically
by stopping condition (39.1) and therefore, we can solve the equations
(37) and (38). For example, by the NH4Cl-74wt%H2O experiment, we
get C = 12.3 and S = 3.3. If wh = 1.0, then V = 1.27, and the solid
fraction at the bottom of the mush is 0.2.

Now, we analyze the fluid flow in a chimney. We introduce a Stokes
stream function ψ such that

(40) (us, ws) = (−1

s

∂ψs

∂z
,
1

s

∂ψs

∂s
).

where ψ satisfies the following boundary conditions

(41) ψs(sa, z) =
1

2
wm(z),

(42) (
∂ψs

∂s
)s=sa = 0, ψs(0, z) = 0, ψs(s, 0) = 0,

sa(z) is the scaled form of the radius of the chimney, i.e., sa = a(z)/ah.

We express the z-momentum equation (35) by using the stream func-
tion ψs.

(43) 0 = −1

δ

∂pc

∂z
+ Rβξc +

R2

a4
h

1

s

∂

∂s
[s

∂

∂s
(
1

s

∂ψs

∂s
)].

If we substitute (40) into (29), we obtain

(44) −1

s

∂ψs

∂z

∂ξc

∂s
+

1

s

∂ψs

∂s

∂ξc

∂z
= 0.
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Equation (44) expresses the fact that ξc is constant along streamlines,
so that

(45) ξc = ξc(ψs).

If we use (45), together with the boundary conditions (42), we obtain

(46) (
∂ξc

∂s
)s=sa = 0, ξc(0, z) = 1, ξc(s, 0) = 1.

Also, the continuity of composition (36.2) at the chimney wall requires

(47) ξc(sa, z) = ξw,

where ξw is a known function from the solution of the mush.
We now begin the von Karman Pohlhausen technique by introducing

trial functions for ψs and ξc

(48) ψs = ψwP1(x) + α(z)P2(x) + β(z)P3(x),

(49) ξc = 1− (1− ξw)P1(x)− λ(z)P2(x),

where α(z), β(z) and λ(z) are to be determined,

P1(x) = (2x2 − x4), P2(x) = x2(1− x2)2, P3(x) = x2(1− x2)3,

and

x =
s

sa

=
r

a(z)
.

We substitute (48) and (49) into (43). We then have

1−(1−ξw)P1−λP2 =
1

Rβδ

dpm

dz
+A(z)[ψw+α(2−6x2)+β(3−18x2+18x4)],

or

(50) 1− (1− ξw)P1−λP2 = X +A(z)[α(2−6x2)+β(3−18x2 +18x4)],

where

(51) A(z) =
16

Rβsa
4

R2

a4
h

represents the ratio of viscous and buoyancy forces, and

(52) X =
1

Rβδ

dpm(a, z)

dz
+ A(z)ψw(z).



Convection in a steady state chimney 201

Note that the continuity of the pressure in (36.1) on the wall was used
in (50). The pressure term in (52) is known by (15), (10), and (11);

(53)
dpm(a, z)

dz
=

wm(z)

F (φm(z))
+ Raξm(z) +

V

2sa

dsa

dz
,

where a/R2 has been neglected compared to 1/a in the last term of (53).
We satisfy (50) and (44) on the axis, on the wall, and in an integrated

form over a z-cross section of the chimney. We then obtain from (50)

(54) 1 = X + A(2α + 3β),

(55) ξw = X + A(−4α + 3β),

(56)
1

2
− 1− ξw

3
− λ

24
=

X − Aα

2
.

Since the requirements of (44) on the axis and on the wall are equivalent
to the first two conditions in (46), respectively, we have

(57)
d

dz
(

∫ 1

0

ξc
∂ψs

∂x
dx) = ξw

dψw

dz
.

If we replace ξc and ψs in (57) by (48) and (49), we obtain

d

dz
[ψw − (1− ξw)(

ψw

2
− α

10
− β

15
)− λψw

10
+

λβ

210
] =

d

dz
(ξwψw)− ψw

dξw

dz
or

(58)
d

dz
[(1− ξw)(

ψw

2
+

α

10
+

β

15
)− λψw

10
+

λβ

210
] = ψw

dTm

dz
,

where the liquidus relation (5) was used.
We now solve (54), (55) and (56) for α(z), β(z) and λ(z). Then we

have
(59)

α(z) =
1

6A
(1− ξw), β(z) =

1

9A
(2+ ξw− 3X), λ(z) = 6(1+ ξw− 2X)

By integrating (58), we also find an expression for the radius of the chim-
ney sa(z).

(60) (1−ξw)(
ψw

2
+

α

10
+

β

15
)− λ

10
(ψw− β

21
)−λ(0)β(0)

210
=

∫ z

0

ψw
dTm

dz
dz.
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Note that we have used in (60) ξw(0) = 1, ψw(0) = 0. We replace α(z),
β(z) and λ(z) in (60) by (59). We then obtain an expression for A(z)

21(1−ξw)(360ψw+
22− 7ξw − 15X

A
)−48(1+ξw−2X)(189ψw−2 + ξw − 3X

A
)

(61) = 15120[
4

210A(0)
(1−X(0))2 +

∫ z

0

ψw
dTm

dz
dz],

or if we substitute (52) into (61) after replacing dpm/dz by (53), since
V/Ra << 1 and (from the ammonium chloride experiment) the radius
of the chimney does not change rapidly, we obtain a simple expression
for A(z)

w2
mA2 − [

105

64

∫ Tm

−1

wm dTm +
721

3072
(1− ξw)wm − 65

32

w2
m

RaF
]A

(62) +
31

256
(1− ξw)2 − 217

1536
(1− ξw)

wm

RaF
+ (

wm

4RaF
)2 = 0,

If we solve the above equation for A(z) by utilizing the knowledge of
wm, Tm, ξw and φ obtained from analyzing the mush, then we get the
stream functionψs from the equation (48).
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