Korean J. Math. 16 (2008), No. 2, pp. 173–189

COVERING (L, \odot) -UNIFORMITIES AND HUTTON (L, \otimes) -UNIFORMITES

Y.C. KIM* AND JUNG MI KO

ABSTRACT. In strictly two-sided, commutative quantale, we introduce the notion of Hutton (L, \otimes) -uniform spaces and covering (L, \odot) -uniform spaces and investigate the properties of them.

1. Introduction

Uniformities in fuzzy sets, have the entourage approach of Lowen [16] and Höhle [6-7] based on powersets of the form $L^{X \times X}$, the uniform covering approach of Kotzé [14] and the uniform operator approach of Rodabaugh [18] as generalization of Hutton [10] based on powersets of the form $(L^X)^{(L^X)}$. For a fixed basis L, algebraic structures in L (cqm-lattices, quantales, MV-algebras) are extended for a completely distributive lattice L or the unit interval or t-norms. Recently, Gutiérrez García et al.[5] introduced L-valued Hutton unifomity on GL-monoid and Kim et al. [11-13] studied Hutton (L, \otimes) -uniformity in a sense of the entourage approach on stsc-quantale.

In this paper, for a stsc-quantale (L, \odot) as a somewhat different aspect in [4,5], we introduce the notion of (L, \odot) -covering uniformities in a sense García et al. [4-5] and Kotzé [14] based on coverings of L^X and Hutton (L, \otimes) -uniformities as a view point of the approach using uniform operators defined by Rodabaugh [18]. We investigate the relationship between Hutton (L, \otimes) -uniformities and covering (L, \odot) covering uniformities.

Received April 11, 2008.

²⁰⁰⁰ Mathematics Subject Classification: 54A40, 08A72, 06D72, 06A15.

Key words and phrases: stsc-quantale, Hutton (L, \otimes) -uniform spaces, covering (L, \odot) -uniform spaces.

^{*}Corresponding author

Y.C. Kim and Jung Mi Ko

2. Preliminaries

DEFINITION 2.1 [8,17]. A triple (L, \leq, \odot) is called a *strictly two-sided, commutative quantale* (stsc-quantale, for short) iff it satisfies the following properties:

(L1) $L = (L, \leq, \lor, \land, \top, \bot)$ is a completely distributive lattice where \top is the universal upper bound and \bot denotes the universal lower bound;

(L2) (L, \odot) is a commutative semigroup;

(L3) $a = a \odot \top$, for each $a \in L$;

 $(L4) \odot$ is distributive over arbitrary joins, i.e.

$$(\bigvee_{i\in\Gamma}a_i)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$$

DEFINITION 2.2. Let $\Omega(X)$ be a subset of $(L^X)^{(L^X)}$ such that if it satisfies, $\phi \in \Omega(X)$,

(O1) $\phi(\bigvee_{i\in\Gamma}\lambda_i) = \bigvee_{i\in\Gamma}\phi(\lambda_i)$, for $\{\lambda_i\}_{i\in\Gamma} \subset L^X$. (O2) $\lambda \leq \phi(\lambda)$ for all $\lambda \in L^X$.

THEOREM 2.3 [11-13]. For $\phi, \phi_1, \phi_2 \in \Omega(X)$, we define, for all $\lambda, \rho \in L^X$,

$$\phi_1 \circ \phi_2(\lambda) = \phi_1(\phi_2(\lambda)),$$

$$\phi_1 \otimes \phi_2(\lambda) = \bigwedge \{ \phi_1(\lambda_1) \odot \phi_2(\lambda_2) \mid \lambda = \lambda_1 \odot \lambda_2 \}.$$

Then the following properties hold:

(1) $\phi^{\leftarrow}(\rho) = \bigvee \{\lambda \in L^X \mid \phi(\lambda) \leq \rho\}$ such that ϕ^{\leftarrow} is a right adjoint of ϕ with $\phi \circ \phi^{\leftarrow}(\rho) \leq \rho$ and $\lambda \leq \phi^{\leftarrow} \circ \phi(\lambda)$.

- (2) $\phi_1 \circ \phi_2 \in \Omega(X)$ and $\phi_1 \otimes \phi_2 \in \Omega(X)$.
- (3) $\phi_1 \otimes \phi_2 \leq \phi_1$ and $\phi_1 \otimes \phi_2 \leq \phi_2$.
- (4) $(\phi_1 \otimes \phi_2) \otimes \phi_3 = \phi_1 \otimes (\phi_2 \otimes \phi_3).$

LEMMA 2.4 [11-13]. Let $f: X \to Y$ be a function. We define the image and preimage operators

$$f^{\Rightarrow} : (L^X)^{(L^X)} \to (L^Y)^{(L^Y)}, \ f^{\Leftarrow} : (L^Y)^{(L^Y)} \to (L^X)^{(L^X)}$$

such that for each $\psi \in (L^Y)^{(L^Y)}$ for all $\mu, \mu_1, \mu_2 \in L^X, \rho_1, \rho_2 \in L^Y$,

$$f^{\Rightarrow}(\phi)(\rho) = (f^{\rightarrow} \circ \phi \circ f^{\leftarrow})(\rho) = f^{\rightarrow}(\phi(f^{\leftarrow}(\rho)), \phi) = f^{\rightarrow}(\phi(f^{\leftarrow}$$

Covering (L, \odot) -uniformities and Hutton (L, \otimes) -uniformites

$$f^{\Leftarrow}(\psi)(\mu) = (f^{\leftarrow} \circ \psi \circ f^{\rightarrow})(\mu) = f^{\leftarrow}(\psi(f^{\rightarrow}(\mu))).$$

For each $\psi, \psi_1, \psi_2 \in \Omega(Y)$ and $\phi_1, \phi_2 \in \Omega(X)$, we have the following properties.

(1) The pair (f[⇒], f[⇐]) is a Galois connection; i.e., f[⇒] ⊢ f[⇐].
(2) f[→](µ₁ ⊙ µ₂) ≤ f[→](µ₁) ⊙ f[→](µ₂) with equality if f is injective and f[←](ρ₁ ⊙ ρ₂) = f[←](ρ₁) ⊙ f[←](ρ₂).
(3) f[⇐](ψ) ∈ Ω(X).
(4) If ψ₁ ≤ ψ₂, then f[⇐](ψ₁) ≤ f[⇐](ψ₂).
(5) f[⇐](ψ₁) ∘ f[⇐](ψ₂) ≤ f[⇐](ψ₁ ∘ ψ₂) with equality if f is onto.
(6) f[⇐](ψ₁) ⊗ f[⇐](ψ₂) = f[⇐](ψ₁ ⊗ ψ₂).

DEFINITION 2.5 [12]. A subset \mathbb{T} of L^X is called an (L, \odot) -topology on X if it satisfies the following conditions:

(T1) $1_X, 1_{\emptyset} \in \mathbb{T}$.

(T2) If $\lambda_1, \lambda_2 \in \mathbb{T}$, then $\lambda_1 \wedge \lambda_2 \in \mathbb{T}$.

(T3) If $\lambda_i \in \mathbb{T}$ for all $i \in \Gamma$, then $(\bigvee_{i \in \Gamma} \lambda_i) \in \mathbb{T}$

(TO) If $\lambda_1, \lambda_2 \in \mathbb{T}$, then $\lambda_1 \odot \lambda_2 \in \mathbb{T}$.

The pair (X, \mathbb{T}) is called an (L, \odot) -topological space.

Let (X, \mathbb{T}_1) and (Y, \mathbb{T}_2) be (L, \odot) -topological spaces. A function $f: (X, \mathbb{T}_1) \to (Y, \mathbb{T}_2)$ is *L*-continuous if $f^{\leftarrow}(\lambda) \in \mathbb{T}_1$, for every $\lambda \in \mathbb{T}_2$.

THEOREM 2.6 [15,17]. Let (M, \leq) and (N, \leq) be a partially ordered set and $\phi : M \to N$ join-preserving map, i.e; $\phi(\bigvee x_i) = \bigvee \phi(x_i)$. ϕ has a right adjoint $\psi : N \to M$ as follows

$$\psi(y) = \bigvee \{ x \in M \mid \phi(x) \le y \}.$$

Moreover, $\phi(x) \leq y$ iff $x \leq \psi(y)$. Equivalently, $id_M \leq \psi \circ \phi$ and $\phi \circ \psi \leq id_N$.

3. Covering (L, \odot) -uniformities and Hutton (L, \otimes) -uniformites

We define a somewhat different aspect of uniformities in [4], we introduce the notion of (L, \otimes) -uniformities as a view point of the approach using uniform operators defined by Rodabaugh [18].

A function $\phi \in \Omega(X)$ is called symmetric if it satisfies

(S) $\phi(\lambda) \odot \mu \neq \overline{0}$ iff $\lambda \odot \phi(\mu) \neq \overline{0}$, for each $\lambda, \mu \in L^X$.

DEFINITION 3.1. A nonempty subset \mathbb{U} of $\Omega(X)$ is called a *Hutton* (L, \otimes) -uniformity on X if it satisfies the following conditions:

(U1) If $\phi \leq \psi$ with $\phi \in \mathbb{U}$ and $\psi \in \Omega(X)$, then $\psi \in \mathbb{U}$.

(U2) For each $\phi \in \mathbb{U}$, there exists $\psi \in \mathbb{U}$ such that $\psi \circ \psi \leq \phi$.

(U3) For each $\phi, \psi \in \mathbb{U}, \phi \otimes \psi \in \mathbb{U}$.

(U4) For each $\phi \in \mathbb{U}$, there exists a symmetric $\psi \in \mathbb{U}$ such that $\psi \leq \phi$.

The pair (X, \mathbb{U}) is called a *Hutton* (L, \otimes) -uniform space. Let \mathbb{U}_1 and \mathbb{U}_2 be Hutton (L, \otimes) -uniformites on X. If $\mathbb{U}_1 \subset \mathbb{U}_2$, \mathbb{U}_2 is called *finer* than \mathbb{U}_1 .

Let (X, \mathbb{U}_1) and (Y, \mathbb{U}_2) be Hutton (L, \otimes) -uniform spaces. A function $f : (X, \mathbb{U}_1) \to (Y, \mathbb{U}_2)$ is *H*-uniformly continuous if $f^{\leftarrow}(\psi) \in \mathbb{U}_1$, for every $\psi \in \mathbb{U}_2$.

THEOREM 3.2. Let \mathbb{U} be a Hutton (L, \otimes) -uniformity on X. We define a subset $\mathbb{T}_{\mathbb{U}}$ of L^X as follows:

$$\mathbb{T}_{\mathbb{U}} = \{ \rho \in L^X \mid \exists \phi \in \mathbb{U}, \phi(\rho) = \rho \}.$$

Then $\mathbb{T}_{\mathbb{U}}$ is an (L, \odot) -topology on X induced by \mathbb{U} .

Proof. (T1). Since $\phi(\overline{0}) = \overline{0}$ and $\phi(\overline{1}) = \overline{1}$ for all $\phi \in \mathbb{U}$, we have $\overline{0}, \overline{1} \in \mathbb{T}_{\mathbb{U}}$.

(T2) and (TO). Let $\lambda_i \in \mathbb{T}_{\mathbb{U}}$ for i = 1, 2. Then $\phi_i \in \mathbb{T}_{\mathbb{U}}$ such that $\phi_i(\lambda_i) = \lambda_i$. Since $\overline{1} \odot (\lambda_1 \land \lambda_2) = \lambda_1 \land \lambda_2$, we have

$$\begin{aligned} (\phi_1 \otimes \phi_2)(\lambda_1 \wedge \lambda_2) &\leq \phi_1(\lambda_1 \wedge \lambda_2) \wedge \phi_2(\lambda_1 \wedge \lambda_2) \\ &\leq \phi_1(\lambda_1) \wedge \phi_2(\lambda_2) = \lambda_1 \wedge \lambda_2, \end{aligned}$$

$$(\phi_1\otimes\phi_2)(\lambda_1\odot\lambda_2)\leq\phi_1(\lambda_1)\odot\phi_2(\lambda_2)\leq\lambda_1\odot\lambda_2.$$

So, $\lambda_1 \wedge \lambda_2, \lambda_1 \odot \lambda_2 \in \mathbb{T}_{\mathbb{U}}$.

(T3) Let $\lambda_i \in \mathbb{T}_{\mathbb{U}}$ for $i \in \Gamma$. Then, for each $i \in \Gamma$, there exists $\phi_i \in \mathbb{U}$ such that $\phi_i(\lambda_i) = \lambda_i$.

Suppose that $\phi(\bigvee_{i\in\Gamma}\lambda_i) \not\leq \bigvee_{i\in\Gamma}\lambda_i$ for all $\phi \in \mathbb{U}$. Since $\phi(\bigvee_{i\in\Gamma}\lambda_i) = \bigvee_{i\in\Gamma}\phi(\lambda_i)$, there exists $\{i_1, i_2, ..., i_m\} \subset \Gamma$ such that

$$\phi(\vee_{k=1}^m \lambda_{i_k}) \not\leq \bigvee_{i \in \Gamma} \lambda_i.$$

Covering (L, \odot) -uniformities and Hutton (L, \otimes) -uniformities

177

Put $\phi = \bigotimes_{k=1}^{m} \phi_{i_k}$. Then

$$\otimes_{k=1}^{m} \phi_{i_k}(\vee_{k=1}^{m} \lambda_{i_k}) = \vee_{k=1}^{m} (\otimes_{k=1}^{m} \phi_{i_k})(\lambda_{i_k}) \leq \vee_{k=1}^{m} \phi_{i_k}(\lambda_{i_k})$$
$$\leq \vee_{k=1}^{m} \lambda_{i_k} \leq \bigvee_{i \in \Gamma} \lambda_i.$$

It is a contradiction. Hence there exists $\phi \in \mathbb{U}$ such that $\phi(\bigvee_{i \in \Gamma} \lambda_i) = \bigvee_{i \in \Gamma} \lambda_i$. Hence $\bigvee_{i \in \Gamma} \lambda_i \in \mathbb{T}_{\mathbb{U}}$.

EXAMPLE 3.3. Let $X = \{x, y, z\}$ be a set and $([0, 1], \odot)$ a quantale defined by $x \odot y = 0 \lor (x + y - 1)$. Define $\phi \in \Omega(X)$ as

$$\phi(\lambda) = \begin{cases} \overline{0} & \text{if } \lambda = \overline{0}, \\ 1_{\{x,y\}} & \text{if } \overline{0} \neq \lambda \leq 1_{\{x,y\}}, \\ 1_{\{z\}}, & \text{if } \overline{0} \neq \lambda \leq 1_{\{z\}}, \\ \overline{1} & \text{otherwise.} \end{cases}$$

where $1_{\{x,y\}}$ and $1_{\{z\}}$ are characteristic functions. We have $(\phi \otimes \phi) = \phi$, $\phi \circ \phi = \phi$ and ϕ is symmetric. Thus, $\mathbb{U} = \{\psi \in \Omega(X) \mid \phi \leq \psi\}$ is a Hutton (L, \otimes) -uniformity on X. From Theorem 3.2, we obtain an (L, \odot) -topology on X as follows:

$$\mathbb{T}_{\mathbb{U}} = \{\overline{0}, \overline{1}, 1_{\{x,y\}}, 1_{\{z\}}\}.$$

THEOREM 3.4. Let (Y, \mathbb{U}) be a Hutton (L, \otimes) -uniform space, X a set and $f: X \to Y$ a function. Define a subset $f^{\leftarrow}(\mathbb{U})$ of $\Omega(X)$ as follows:

$$f^{\Leftarrow}(\mathbb{U}) = \{ \phi \in \Omega(X) \mid \exists \psi \in \mathbb{U}, \ f^{\Leftarrow}(\psi) \le \phi \}.$$

Then we have the following properties.

(1) If ψ is symmetric, $f^{\leftarrow}(\psi)$ is symmetric.

(2) The structure $f^{\leftarrow}(\mathbb{U})$ is the coarsest Hutton (L, \otimes) -uniformity on X for which f is H-uniformly continuous.

(3) A map $g: (Z, \mathbb{U}_1) \to (X, f^{\leftarrow}(\mathbb{U}))$ is *H*-uniformly continuous iff $f \circ g: (Z, \mathbb{U}_1) \to (Y, \mathbb{U})$ is *H*-uniformly continuous.

Proof. (1) For $f^{\leftarrow}(\psi)(\lambda) \odot \mu \neq \overline{0}$, we have

$$\overline{0} \neq f^{\rightarrow} \left(f^{\Leftarrow}(\psi)(\lambda) \odot \mu \right) \leq f^{\rightarrow}(f^{\Leftarrow}(\lambda)) \odot f^{\rightarrow}(\mu) \\ \leq \psi(f^{\rightarrow}(\lambda)) \odot f^{\rightarrow}(\mu).$$

By the symmetric of ψ , $f^{\rightarrow}(\lambda) \odot \psi(f^{\rightarrow}(\mu)) \neq \overline{0}$, there exists $x \in X$ such that

$$f^{\rightarrow}(\lambda)(f(x)) \odot \psi(f^{\rightarrow}(\mu))(f(x)) \neq \overline{0}.$$

It implies $\lambda(x) \odot f^{\leftarrow}(\psi)(\mu)(x) \neq 0$. Hence $\lambda \odot f^{\leftarrow}(\psi)(\mu) \neq \overline{0}$. So, f^{\leftarrow} is symmetric.

(2) First, we will show that $f^{\leftarrow}(\mathbb{U})$ is a Hutton (L, \otimes) -uniformity on X.

(U1) Obvious.

(U2) For each $\phi \in f^{\leftarrow}(\mathbb{U})$, there exists $\psi \in \mathbb{U}$ with $f^{\leftarrow}(\psi) \leq \phi$. For $\psi \in \mathbb{U}$, since (Y, \mathbb{U}) is a Hutton (L, \otimes) -uniform space, by (U2), there exists $\gamma \in \mathbb{U}$ with $\gamma \circ \gamma \leq \psi$. By Lemma 2.4(5), since

$$f^{\Leftarrow}(\gamma) \circ f^{\Leftarrow}(\gamma) \le f^{\Leftarrow}(\gamma \circ \gamma) \le f^{\Leftarrow}(\psi) \le \phi,$$

then $f^{\Leftarrow}(\gamma) \in f^{\Leftarrow}(\mathbb{U})$.

(U3) If $\phi_i \in f^{\leftarrow}(\mathbb{U})$, for i = 1, 2, there exists $\psi_i \in \mathbb{U}$ with $f^{\leftarrow}(\psi_i) \leq \phi_i$. Since $f^{\leftarrow}(\psi_1) \otimes f^{\leftarrow}(\psi_2) = f^{\leftarrow}(\psi_1 \otimes \psi_2) \leq \phi_1 \otimes \phi_2$ from Lemma 2.4(6), we have $\phi_1 \otimes \phi_2 \in f^{\leftarrow}(\mathbb{U})$.

(U4) By (1), it is easily proved.

Second, by definition of $f^{\leftarrow}(\mathbb{U}), f^{\leftarrow}(\psi) \in f^{\leftarrow}(\mathbb{U})$, for all $\psi \in \mathbb{U}$. Hence $f: (X, f^{\leftarrow}(\mathbb{U})) \to (Y, \mathbb{U})$ is *H*-uniformly continuous.

Finally, let $f : (X, \mathbb{U}_1) \to (Y, \mathbb{U})$ be *H*-uniformly continuous. For each $\phi \in f^{\Leftarrow}(\mathbb{U})$, there exists $\psi \in \mathbb{U}$ with $f^{\Leftarrow}(\psi) \leq \phi$. Since $f^{\Leftarrow}(\psi) \in \mathbb{U}_1$, then $\phi \in \mathbb{U}_1$. Hence $f^{\Leftarrow}(\mathbb{U}) \subset \mathbb{U}_1$.

(3) Necessity of the composition condition is clear since the composition of H-uniformly continuous maps is H-uniformly continuous.

If $\phi \in f^{\leftarrow}(\mathbb{U})$, there exists $\psi \in \mathbb{U}$ such that $f^{\leftarrow}(\psi) \leq \phi$. Since $f \circ g$ is *H*-uniformly continuous, for $\psi \in \mathbb{U}$,

$$(f \circ g)^{\Leftarrow}(\psi) = g^{\Leftarrow} \circ f^{\Leftarrow}(\psi) \in \mathbb{U}_1.$$

Since $g^{\Leftarrow}(\phi) \ge g^{\Leftarrow} \circ f^{\Leftarrow}(\psi) \in \mathbb{U}_1$, we have $g^{\Leftarrow}(\phi) \in \mathbb{U}_1$.

A subset C of L^X is a cover of X if $\bigvee \{\lambda \mid \lambda \in C\} = 1_X$. For any cover C_1, C_2 , we denote $C_1 \leq C_2$ if each $\lambda \in C_1$, there exists $\mu \in C_2$ such that $\lambda \leq \mu$. We denote C(X) as the collections of all covering of X.

THEOREM 3.5. Let $f: X \to Y$ be a function. For $C, C_1, C_2 \subset L^X$ and $\lambda, \mu \in L^X$, we define

$$st(\lambda, C) = \bigvee \{ \mu \in C \mid \mu \odot \lambda \neq \emptyset \},$$
$$st(C) = \{ st(\lambda, C) \mid \lambda \in C \},$$
$$C_1 \odot C_2 = \{ \lambda_1 \odot \lambda_2 \mid \lambda_i \in C_i, i = 1, 2 \}.$$

Then we have the following properties:

(1) If C is a cover, then $\lambda \leq st(\lambda, C)$ and $C \leq st(C)$. (2) If C_1 and C_2 are covers, then $C_1 \odot C_2$ and $C_1 \wedge C_2$ are covers. (3) If $\lambda \leq \mu$, then $st(\lambda, C) \leq st(\mu, C)$. (4) If $C_1 \leq C_2$, then $st(\lambda, C_1) \leq st(\lambda, C_2)$. (5) $st(\lambda \odot \mu, C_1 \odot C_2) \leq st(\lambda, C_1) \odot st(\mu, C_2)$. (6) $st(\bigvee \lambda_i, C) = \bigvee st(\lambda_i, C)$. (7) $st(st(\lambda, C), C) \leq st(\lambda, st(C))$. (8) $f^{\rightarrow}(st(\lambda, C)) \leq st(f^{\rightarrow}(\lambda), f^{\rightarrow}(C))$. (9) $f^{\rightarrow}(st(C)) \leq st(f^{\rightarrow}(C))$. (10) $st(f^{\leftarrow}(\lambda), f^{\leftarrow}(C)) \leq f^{\leftarrow}(st(\lambda, C))$. (11) $st(f^{\leftarrow}(C)) \leq f^{\leftarrow}(st(C))$.

Proof. (5) Suppose $st(\lambda \odot \mu, C_1 \odot C_2) \not\leq st(\lambda, C_1) \odot st(\mu, C_2)$. By the definition of $st(\lambda \odot \mu, C_1 \odot C_2)$, there exist $\rho_i \in C_i$ for i = 1, 2, with $(\rho_1 \odot \rho_2) \odot (\lambda \odot \mu) \neq \overline{0}$ such that

$$\rho_1 \odot \rho_2 \not\leq st(\lambda, C_1) \odot st(\mu, C_2)$$

Since $(\rho_1 \odot \rho_2) \odot (\lambda \odot \mu) \neq \overline{0}$ implies $\rho_1 \odot \lambda \neq \overline{0}$ and $\rho_2 \odot \mu \neq \overline{0}$, we have $st(\lambda, C_1) \odot st(\mu, C_2) \geq \rho_1 \odot \rho_2$. It is a contradiction. Hence $st(\lambda \odot \mu, C_1 \odot C_2) \leq st(\lambda, C_1) \odot st(\mu, C_2)$.

Y.C. Kim and Jung Mi Ko

(8) Since $\lambda \odot \rho \neq \overline{0}$ implies $f^{\rightarrow}(\lambda) \odot f^{\rightarrow}(\rho) \geq f^{\rightarrow}(\lambda \odot \rho) \neq \overline{0}$, we have

$$\begin{split} f^{\rightarrow}(st(\lambda,C)) &= f^{\rightarrow}(\bigvee\{\rho \mid \rho \odot \lambda \neq \overline{0}, \rho \in C\}) \\ &= \bigvee\{f^{\rightarrow}(\rho) \mid \rho \odot \lambda \neq \overline{0}, \rho \in C\} \\ &\leq \bigvee\{f^{\rightarrow}(\rho) \mid f^{\rightarrow}(\rho) \odot f^{\rightarrow}(\lambda) \neq \overline{0}, \rho \in C\} \\ &= st(f^{\rightarrow}(\lambda), f^{\rightarrow}(C)). \end{split}$$

Other cases follow from Proposition 3.2 in [4].

EXAMPLE 3.6. Let $X = \{x, y, z\}$ be a set and $([0, 1], \odot)$ a stscquantale defined by $a \odot b = 0 \lor (a + b - 1)$. Let $C = \{\rho_i \in [0, 1]^X \mid i = 1, 2, 3\}$ be a cover where

$$\rho_1(x) = 0.3, \rho_1(y) = 1, \rho_1(z) = 0, \quad \rho_2(x) = 1, \rho_2(y) = 0.2, \rho_2(z) = 0,$$

 $\rho_3(x) = 0, \rho_3(y) = 0, \rho_3(z) = 1.$

We obtain

$$C \odot C = \{\rho_1 \odot \rho_1 = 1_{\{y\}}, \rho_2 \odot \rho_2 = 1_{\{x\}}, \rho_1 \odot \rho_2, \rho_3\},\$$

$$1_{\{x,y\}} = st(\rho_1 \odot \rho_2, C \odot C) \le st(\rho_1, C) \odot st(\rho_2, C)$$

= $1_{\{x,y\}} \odot 1_{\{x,y\}} = 1_{\{x,y\}}.$

Since $st(\rho_1, C) = st(\rho_2, C) = 1_{\{x,y\}}, st(\rho_3, C) = 1_{\{z\}}$, we obtain

$$st(C) = \{1_{\{x,y\}}, 1_{\{z\}}\}, \ C \le st(C).\Box$$

DEFINITION 3.7. A nonempty family \mathcal{U} of *L*-covers of *X* is called a covering (L, \odot) -uniformity on *X* if it satisfies the following conditions: (UC1) If $C_1 \leq C_2$ and $C_1 \in \mathcal{U}$, then $C_2 \in \mathcal{U}$. (UC2) For each $C_1, C_2 \in \mathcal{U}, C_1 \odot C_2 \in \mathcal{U}$. (UC3) For each $C_1 \in \mathcal{U}$, there exists $C_2 \in \mathcal{U}$ such that $st(C_2) \leq C_1$.

The pair (X, \mathcal{U}) is said to be a covering (L, \odot) -uniform space.

Let \mathcal{U}_1 and \mathcal{U}_2 be covering (L, \odot) -uniformites on X. If $\mathcal{U}_1 \subset \mathcal{U}_2, \mathcal{U}_2$ is called *finer than* \mathcal{U}_1 .

The pair (X, \mathcal{B}) is said to be a covering (L, \odot) -uniform base if it satisfies (UC2) and (UC3).

Let (X, \mathcal{U}_1) and (Y, \mathcal{U}_2) be covering (L, \odot) -uniform spaces. A function $f : (X, \mathcal{U}_1) \to (Y, \mathcal{U}_2)$ is *C*-uniformly continuous if $f^{\leftarrow}(C) \in \mathcal{U}_1$, for every $C \in \mathcal{U}_2$.

THEOREM 3.8. Let (X, \mathcal{U}) be a covering (L, \odot) -uniform space. We define $I_{\mathcal{U}} : L^X \to L^X$ as follows:

$$I_{\mathcal{U}}(\lambda) = \bigvee \{ \rho \in L^X \mid st(\rho, C) \le \lambda, \ \exists C \in \mathcal{U} \}.$$
$$st(C) = \{ st(\lambda, C) \mid \lambda \in C \}.$$

Then we have the following properties: (1) $I_{\mathcal{U}}(\overline{1}) = \overline{1}$. (2) $I_{\mathcal{U}}(\lambda) \leq \lambda$. (3) $I_{\mathcal{U}}(I_{\mathcal{U}}(\lambda)) = I_{\mathcal{U}}(\lambda)$. (4) $I_{\mathcal{U}}(\lambda \wedge \mu) \geq I_{\mathcal{U}}(\lambda) \wedge I_{\mathcal{U}}(\mu)$. (5) $I_{\mathcal{U}}(\lambda \odot \mu) \geq I_{\mathcal{U}}(\lambda) \odot I_{\mathcal{U}}(\mu)$.

Proof. (5) Suppose $I_{\mathcal{U}}(\lambda \odot \mu) \geq I_{\mathcal{U}}(\lambda) \odot I_{\mathcal{U}}(\mu)$. By the definition of $I_{\mathcal{U}}(\lambda)$ and $I_{\mathcal{U}}(\mu)$, there exist $\rho_i \in C_i$ and $C_i \in \mathcal{U}$ for i = 1, 2 with $st(\rho_1, C_1) \leq \lambda$ and $st(\rho_2, C_2) \leq \mu$ such that

$$I_{\mathcal{U}}(\lambda \odot \mu) \not\geq \rho_1 \odot \rho_2$$

Since

$$st(\rho_1 \odot \rho_2, C_1 \odot C_2) \leq st(\rho_1, C_1) \odot st(\rho_1, C_2) \leq \lambda \odot \mu,$$

we have $I_{\mathcal{U}}(\lambda \odot \mu) \geq \rho_1 \odot \rho_2$. It is a contradiction. Hence $I_{\mathcal{U}}(\lambda \odot \mu) \geq I_{\mathcal{U}}(\lambda) \odot I_{\mathcal{U}}(\mu)$.

Other cases follows from Proposition 3.4 in [4].

THEOREM 3.9. Let \mathcal{U} be a covering (L, \odot) -uniformity on X. Then the following properties hold:

(1) We define a subset $\mathbb{T}_{\mathcal{U}}$ of L^X as follows:

$$\mathbb{T}_{\mathcal{U}} = \{ \rho \in L^X \mid \exists C \in \mathcal{U}, st(\rho, C) = \rho \}.$$

Then $\mathbb{T}_{\mathcal{U}}$ is an (L, \odot) -topology on X induced by \mathcal{U} .

(2) We define a subset $\mathbb{T}_{I_{\mathcal{U}}}$ of L^X as follows:

$$\mathbb{T}_{I_{\mathcal{U}}} = \{ \rho \in L^X \mid I_{\mathcal{U}}(\rho) \ge \rho \}.$$

Then $\mathbb{T}_{I_{\mathcal{U}}}$ is an (L, \odot) -topology on X induced by $I_{\mathcal{U}}$. (3) $\mathbb{T}_{I_{\mathcal{U}}} = \mathbb{T}_{\mathcal{U}}$.

Proof. (1) (T1) Since $st(\overline{0}, C) = \overline{0}$ and $st(\overline{1}, C) = \overline{1}$ for all $C \in \mathcal{U}$, we have $\overline{0}, \overline{1} \in \mathbb{T}_{\mathcal{U}}$.

(T2) and (TO). Let $\lambda_i \in \mathbb{T}_{\mathcal{U}}$ for i = 1, 2. Then $C_i \in \mathcal{U}$ such that $st(\lambda_i, C_i) = \lambda_i$. Since

$$st(\lambda_1 \wedge \lambda_2, C_1 \wedge C_2) \leq st(\lambda_1, C_1) \wedge st(\lambda_2, C_2) = \lambda_1 \wedge \lambda_2,$$

$$st(\lambda_1 \odot \lambda_2, C_1 \odot C_2) \leq st(\lambda_1, C_1) \odot st(\lambda_2, C_2) = \lambda_1 \odot \lambda_2$$

we have $\lambda_1 \wedge \lambda_2, \lambda_1 \odot \lambda_2 \in \mathbb{T}_{\mathcal{U}}$.

(T3) Let $\lambda_i \in \mathbb{T}_{\mathcal{U}}$ for $i \in \Gamma$. Then, for each $i \in \Gamma$, there exists $C_i \in \mathcal{U}$ such that $st(\lambda_i, C_i) = \lambda_i$.

Suppose that $st(\bigvee_{i\in\Gamma}\lambda_i, C) \not\leq \bigvee_{i\in\Gamma}\lambda_i$ for all $C \in \mathcal{U}$. Since $st(\bigvee\lambda_i, C) = \bigvee st(\lambda_i, C)$, there exists $\{i_1, i_2, ..., i_m\} \subset \Gamma$ such that

$$st(\vee_{k=1}^m \lambda_{i_k}, C) \not\leq \bigvee_{i \in \Gamma} \lambda_i$$

Put $C = \odot_{k=1}^m C_{i_k}$. Then

$$st(\vee_{k=1}^{m}\lambda_{i_{k}}, \odot_{k=1}^{m}C_{i_{k}}) = \vee_{k=1}^{m}st(\lambda_{i_{k}}, \odot_{k=1}^{m}C_{i_{k}})$$
$$\leq \vee_{k=1}^{m}st(\lambda_{i_{k}}, C_{i_{k}})$$
$$= \vee_{k=1}^{m}\lambda_{i_{k}} \leq \bigvee_{i\in\Gamma}\lambda_{i}.$$

It is a contradiction. Thus, there exists $C \in \mathcal{U}$ such that $st(\bigvee_{i\in\Gamma}\lambda_i, C) = \bigvee_{i\in\Gamma}\lambda_i$. Hence $\bigvee_{i\in\Gamma}\lambda_i \in \mathbb{T}_{\mathcal{U}}$. (2) (T1) Since $I_{\mathcal{U}}(\overline{1}) = \overline{1}$ and $I_{\mathcal{U}}(\overline{0}) = \overline{0}$, then $\overline{0}, \overline{1} \in \mathbb{T}_{I_{\mathcal{U}}}$. (T2) If $\lambda_i \in \mathbb{T}_{I_{\mathcal{U}}}$ for each i = 1, 2, by Theorem 3.8 (4-5), $\lambda_1 \wedge \lambda_2, \lambda_1 \odot$ $\lambda_2 \in \mathbb{T}_{I_{\mathcal{U}}}$. (T3) Let $\lambda_i \in \mathbb{T}_{I_{\mathcal{U}}}$ for $i \in \Gamma$. Since

$$I_{\mathcal{U}}(\bigvee_{i\in\Gamma}\lambda_i) \ge \bigvee_{i\in\Gamma}I_{\mathcal{U}}(\lambda_i) \ge \bigvee_{i\in\Gamma}\lambda_i$$

we have $\bigvee_{i \in \Gamma} \lambda_i \in \mathbb{T}_{I_{\mathcal{U}}}$.

(3) Let $\rho \in \mathbb{T}_{\mathcal{U}}$. Then $C \in \mathcal{U}$ with $st(\rho, C) = \rho$. So, $I_{\mathcal{U}}(\rho) = \rho$. Hence $\rho \in \mathbb{T}_{I_{\mathcal{U}}}$.

Let $\lambda \in \mathbb{T}_{I_{\mathcal{U}}}$. Then $I_{\mathcal{U}}(\lambda) \geq \lambda$. For all $st(\rho_i, C_i) \leq \lambda$, $\bigvee_{i \in \Gamma} \rho_i = \lambda$. Hence $\bigvee_{i \in \Gamma} \rho_i = \bigvee_{i \in \Gamma} st(\rho_i, C_i) = \lambda$. By a similar proof as in (1), there exists $C \in \mathcal{U}$ such that $st(\bigvee_{i \in \Gamma} \rho_i, C) = \bigvee_{i \in \Gamma} \rho_i = \lambda$. So, $\lambda \in \mathbb{T}_{\mathcal{U}}$.

THEOREM 3.10. Let (Y, \mathcal{B}) be a covering (L, \odot) -uniform base, X a set and $f : X \to Y$ a function. Define a subset $f^{\leftarrow}(\mathcal{B})$ of C(X) as follows:

$$f^{\leftarrow}(\mathcal{B}) = \{ f^{\leftarrow}(C) \mid C \in \mathcal{B} \}.$$

Then we have the following properties.

(1) The structure $f^{\leftarrow}(\mathcal{B})$ is a covering (L, \odot) -uniform base on X.

(2) The structure $[f^{\leftarrow}(\mathcal{B})] = \{C \in C(X) \mid f^{\leftarrow}(B) \leq C, B \in \mathcal{B}\}$ is the coarsest covering (L, \odot) -uniform base on X for which f is C-uniformly continuous.

(3) A map $g: (Z, \mathcal{U}_1) \to (X, [f^{\leftarrow}(\mathcal{U})]$ is C-uniformly continuous iff $f \circ g: (Z, \mathcal{U}_1) \to (Y, \mathcal{U})$ is C-uniformly continuous.

Proof. (1) (UC2) It follows from $f^{\leftarrow}(C_1 \odot C_2) = f^{\leftarrow}(C_1) \odot f^{\leftarrow}(C_2)$. (UC3) For each $f^{\leftarrow}(C) \in f^{\leftarrow}(\mathcal{B})$ with $C \in \mathcal{B}$, there exists $C_1 \in \mathcal{B}$ such that $st(C_1) \leq C$. Since $st(f^{\leftarrow}(C_1)) \leq f^{\leftarrow}(st(C_1)) \leq f^{\leftarrow}(C)$, $f^{\leftarrow}(\mathcal{B})$ is a covering (L, \odot) -uniform base on X.

(2) and (3) are similarly proved as in Theorem 3.4.

Y.C. Kim and Jung Mi Ko

EXAMPLE 3.11. Let $Z = \{a, b, c, d\}$ and $X = \{x, y, z\}$ be a set and $([0, 1], \odot)$ a stsc-quantale defined by $a \odot b = 0 \lor (a + b - 1)$. Let $f : Z \to X$ be a function as f(a) = x, f(b) = y, f(c) = f(d) = z. Let $\mathcal{U} = \{C \in C(X) \mid C_1 = \{1_{\{x,y\}}, 1_{\{z\}}\} \le C\}$ be a covering (L, \odot) uniformity on X. Then $f^{\leftarrow}(\mathcal{U}) = \{f^{\leftarrow}(C) \in C(Z) \mid C \in \mathcal{U}\}$ is not a covering (L, \odot) -uniformity on X because, for $\rho(a) = \rho_1(b) = 1, \rho(c) =$ $0.3, \rho(d) = 0,$

$$f^{\rightarrow}(1_{\{x,y\}}) \le \rho, \ \rho \notin f^{\leftarrow}(\mathcal{B}).$$

4. Covering (L, \odot) uniformities and Hutton (L, \otimes) -uniformites THEOREM 4.1. We define a mapping $\Delta : C(X) \to \Omega(X)$ as follows:

$$\Delta(C)(\lambda) = st(\lambda, C) = \bigvee \{ \mu \in C \mid \mu \odot \lambda \neq \emptyset \}.$$

Then we have the following properties:

(1) For each $C \in C(X)$, $\Delta(C) \in \Omega(X)$.

(2) $\Delta(C)$ has a right adjoint mapping $\Delta(C)^{\leftarrow}$ defined by

$$\Delta(C)^{\leftarrow}(\lambda) = \bigvee \{ \rho \in L^X \mid st(\rho, C) \le \lambda \}.$$

It follows $\Delta(C)^{\leftarrow} \circ \Delta(C) \ge 1_{L^X}$ and $\Delta(C) \circ \Delta(C)^{\leftarrow} \le 1_{L^X}$. Furthermore, $\Delta(C)(\lambda) \le \rho$ iff $\lambda \le \Delta(C)^{\leftarrow}(\rho)$.

(3) Δ has a right adjoint mapping $\Sigma : \Omega(X) \to C(X)$ as follows:

$$\Sigma(\phi) = \{\phi(\lambda) \mid \lambda \odot \phi(\lambda) \neq \emptyset\}.$$

It implies $\Sigma \circ \Delta \geq 1_{C(X)}$ and $\Delta \circ \Sigma \leq 1_{\Omega(X)}$.

Proof. (1) It follows from: $\Delta(C)(\bigvee \lambda_i) = st(\bigvee \lambda_i, C) = \bigvee st(\lambda_i, C) = \bigvee \Delta(C)(\lambda_i)$ and $\Delta(C)(\lambda) = st(\lambda, C) \ge \lambda$.

(2) By (1) and Theorem 2.6, $\Delta(C)$ has a right adjoint mapping $\Delta(C)^{\rightarrow}$ as follows:

$$\Delta(C)^{\leftarrow}(\lambda) = \bigvee \{ \rho \in L^X \mid st(\rho, C) \le \lambda \}.$$

By Theorem 2.6, the results hold.

(6) Since $\Delta(\bigvee C_i)(\lambda) = st(\lambda, \bigvee C_i) = \bigvee st(\lambda, C_i) = \bigvee \Delta(C_i)(\lambda)$, we have $\Delta(\bigvee C_i) = \bigvee \Delta(C_i)$. By Theorem 2.6, Δ has a right adjoint mapping Σ as follows:

$$\begin{split} \Sigma(\phi) &= \bigvee \{ C \in C(X) \mid \Delta(C) \leq \phi \} \\ &= \bigvee \{ C \in C(X) \mid \Delta(C)(\lambda) \leq \phi(\lambda) \} \\ &= \bigvee \{ C \in C(X) \mid st(\lambda, C) \leq \phi(\lambda) \} \\ &= \bigvee \{ C \in C(X) \mid \bigvee_{i} \mu_{i} \leq \phi(\lambda), \ \lambda \odot \mu_{i} \neq \overline{0}, \ \mu_{i} \in C \} \\ &= \{ \phi(\lambda) \in L^{X} \mid \lambda \odot \phi(\lambda) \neq \overline{0} \}. \end{split}$$

By Theorem 2.6, others cases hold.

THEOREM 4.2. Let \mathcal{U} be a covering (L, \odot) -uniformity on X. Then $\mathbb{U}_{\mathcal{U}} = \{\phi \in \Omega(X) \mid \exists C \in \mathcal{U}, \phi_C \leq \phi\}$ is a Hutton (L, \otimes) -uniformity on X where $\phi_C(\lambda) = \Delta(C)(\lambda) = st(\lambda, C)$.

Proof. (U1) It is easy.

(U2) For each $\psi \in \mathbb{U}_{\mathcal{U}}$, there exists $C \in \mathcal{U}$ such that $\phi_C \leq \psi$. For $C \in \mathcal{U}$, there exists $C_1 \in \mathcal{U}$ such that $st(C_1) \leq C$. Since

$$\phi_{C_1} \circ \phi_{C_1}(\lambda) = \phi_{C_1}(st(\lambda, C_1))$$

= $st(st(\lambda, C_1), C_1)$
 $\leq st(\lambda, st(C_1))$ (by Theorem 3.5(7))
 $\leq st(\lambda, C) = \phi_C(\lambda),$

we have $\phi_{C_1} \circ \phi_{C_1} \leq \phi_C \leq \psi$.

(U3) For each $\psi_i \in \mathbb{U}_{\mathcal{U}}$ for i = 1, 2, there exist $C_i \in \mathcal{U}$ such that $\phi_{C_i} \leq \psi_i$. Since

$$\phi_{C_1} \otimes \phi_{C_2}(\lambda) = \bigwedge \{ \phi_{C_1}(\lambda_1) \odot \phi_{C_2}(\lambda_2) \mid \lambda = \lambda_1 \odot \lambda_2 \}$$
$$= \bigwedge \{ st(\lambda_1, C_1) \odot st(\lambda_2, C_2) \mid \lambda = \lambda_1 \odot \lambda_2 \}$$
$$\geq st(\lambda_1 \odot \lambda_2, C_1 \odot C_2) = \phi_{C_1 \odot C_2}(\lambda),$$

we have $\phi_{C_1 \odot C_2} \leq \phi_{C_1} \otimes \phi_{C_2} \leq \psi_1 \otimes \psi_2$. Hence $\psi_1 \otimes \psi_2 \in \mathbb{U}_{\mathcal{U}}$.

(U5) For each $\psi \in \mathbb{U}_{\mathcal{U}}$, there exists $C \in \mathcal{U}$ such that $\phi_C \leq \psi$. Since $\phi_C(\lambda) \odot \mu = st(\lambda, C) \odot \mu \neq \overline{0}$ iff there exists $\rho \in C$ such that $\rho \odot \lambda \neq \overline{0}$ and $\rho \odot \mu \neq \overline{0}$ iff $\lambda \odot \phi_C(\mu) \neq \overline{0}$. Hence ϕ_C is symmetric.

In Theorem 4.1(3), we define:

$$C_{\phi} = \begin{cases} \Sigma(\phi) - \{\overline{1}\} & \text{if } \bigvee \lambda_i = 1, \ \forall \lambda_i \in \Sigma(\phi) - \{\overline{1}\}, \\ \Sigma(\phi) & \text{otherwise.} \end{cases}$$

THEOREM 4.3. Let \mathbb{U} be a Hutton (L, \otimes) -uniformity on X satisfying the following condition

(C) for $\lambda, \mu \in C_{\phi}$ with $\lambda \odot \mu \neq \overline{0}$, we have $\lambda \leq \phi(\mu)$.

Then we have the following properties

(1) $\mathcal{U}_{\mathbb{U}} = \{ C \in C(X) \mid C_{\phi} \leq C, \phi \in \mathbb{U} \}$ is a covering (L, \odot) -uniformity on X.

(2) $\mathbb{U} \subset \mathbb{U}_{\mathcal{U}_{\mathbb{U}}}$ and $\mathcal{U}_{\mathbb{U}_{\mathcal{U}}} = \mathcal{U}$.

Proof. (1) (UC1) If $C_1 \leq C_2$ and $C_1 \in \mathcal{U}_{\mathbb{U}}$, then there exist $\phi \in \mathbb{U}$ such that $C_{\phi} \leq C_1 \leq C_2$. So, $C_2 \in \mathcal{U}_{\mathbb{U}}$.

(UC2) For each $C_i \in \mathcal{U}_{\mathbb{U}}$ for i = 1, 2, there exist $\phi_i \in \mathbb{U}$ such that $C_{\phi_i} \leq C_i$. For $\lambda \odot (\phi_1 \otimes \phi_2)(\lambda) \neq \overline{0}$, since

$$(\phi_1 \otimes \phi_2)(\lambda) = \bigwedge \{ \phi_1(\lambda) \odot \phi_2(\lambda_2) \mid \lambda = \lambda_1 \odot \lambda_2 \},\$$

 $\lambda_1 \odot \lambda_2 \odot \phi_1(\lambda_1) \odot \phi_2(\lambda_2) \neq \overline{0} \text{ implies } \lambda_1 \odot \phi_1(\lambda_1) \neq \overline{0}, \ \lambda_2 \odot \phi_2(\lambda_2) \neq \overline{0},$ then $(\phi_1 \otimes \phi_2)(\lambda) \leq \phi_1(\lambda_1) \odot \phi_2(\lambda_2)$. Hence $C_{\phi_1 \otimes \phi_2} \leq C_{\phi_1} \odot C_{\phi_2} \leq C_1 \odot C_2$. Thus $C_1 \odot C_2 \in \mathcal{U}_{\mathbb{U}}$.

(UC3) We only show that $st(C_{\phi_1}) \leq C_{\phi_2}$ such that $\phi_1 \circ \phi_1 \leq \phi_2$. For $st(\phi_1(\lambda), C_{\phi_1}) \in st(C_{\phi_1})$, since

$$st(\phi_1(\lambda), C_{\phi_1}) = \bigvee \{\phi_1(\rho) \in C_{\phi_1} \mid \phi_1(\lambda) \odot \phi_1(\rho) \neq \overline{0}\}$$

$$\leq \bigvee \{\phi_1(\rho) \in C_{\phi_1} \mid \phi_1(\rho) \leq \phi_1(\phi_1(\lambda))\} \text{ (by (C))}$$

$$\leq \phi_1(\phi_1(\lambda)) \leq \phi_2(\lambda),$$

$$\phi_1(\lambda) \le st(\phi_1(\lambda), C_{\phi_1}) \le \phi_1(\phi_1(\lambda)) \le \phi_2(\lambda),$$

and $\overline{0} \neq \lambda \odot \phi_1(\lambda) \leq \lambda \odot \phi_2(\lambda)$, then there exists $\phi_2(\lambda) \in C_{\phi_2}$ such that $st(\phi_1(\lambda), C_{\phi_1}) \leq \phi_2(\lambda)$. Thus, the results hold.

(2) Since $\Sigma \circ \Delta \geq 1_{C(X)}$ and $\Delta \circ \Sigma \leq 1_{\Omega(X)}$, we have

$$C \leq C_{\phi_C}, \ \phi_{C_{\phi}} \leq \phi.$$

It implies $\mathcal{U}_{\mathbb{U}_{\mathcal{U}}} \subset \mathcal{U}$ and $\mathbb{U} \subset \mathbb{U}_{\mathcal{U}_{\mathbb{U}}}$.

For each $B \in \mathcal{U}$, there exists $C \in \mathcal{U}$ such that $st(C) \leq B$. Let $\phi_C(\lambda) \in C_{\Phi_C}$ with $\phi_C(\lambda) \odot \lambda \neq \overline{0}$. Since $st(C) \leq B$, there exists $\rho \in B$ such that $\phi_C(\lambda) = st(\lambda, C) \leq \rho$. Hence $C_{\phi_C} \leq B$. So, $\mathcal{U} \subset \mathcal{U}_{\mathbb{U}_{\mathcal{U}}}$.

EXAMPLE 4.4. Let $X = \{x, y, z\}$ be a set and $([0, 1], \odot)$ a quantale defined by $x \odot y = 0 \lor (x + y - 1)$. Define $\phi \in \Omega(X)$ as

$$\phi(\lambda) = \begin{cases} \overline{0} & \text{if } \lambda = \overline{0}, \\ 1_{\{x,y\}} & \text{if } \overline{0} \neq \lambda \leq 1_{\{x\}}, \\ 1_{\{z\}}, & \text{if } \overline{0} \neq \lambda \leq 1_{\{z\}}, \\ \overline{1} & \text{otherwise.} \end{cases}$$

Since $\phi \otimes \phi = \phi$, $\phi \circ \phi = \phi$ and ϕ is symmetric. Thus, $\mathbb{U} = \{\psi \in \Omega(X) \mid \phi \leq \psi\}$ is a Hutton (L, \otimes) -uniformity on X. From Theorem 4.1, we obtain

$$\Sigma(\phi) = \{1_{\{x,y\}}, 1_{\{z\}}, \bar{1}\},\$$
$$C_{\phi} = \{1_{\{x,y\}}, 1_{\{z\}}\}.$$

Since $C_{\phi} \odot C_{\phi} = C_{\phi}$ and $st(C_{\phi}) = C_{\phi}$, we obtain a covering (L, \odot) -uniformity on X as follows

$$\mathcal{U}_{\mathbb{U}} = \{ C \in C(X) \mid C_{\phi} \le C \},\$$

and a Hutton (L, \otimes) -uniformity $\mathbb{U} = \{ \psi \in \Omega(X) \mid \phi_{C_{\phi}} \leq \psi \}$ where

$$\phi_{C_{\phi}}(\lambda) = \begin{cases} \overline{0} & \text{if } \lambda = \overline{0}, \\ 1_{\{x,y\}} & \text{if } \overline{0} \neq \lambda \leq 1_{\{x,y\}}, \\ 1_{\{z\}}, & \text{if } \overline{0} \neq \lambda \leq 1_{\{z\}}, \\ \overline{1} & \text{otherwise.} \end{cases}$$

Since $\phi_{C_{\phi}} \leq \phi$, we have $\mathbb{U} \subset \mathbb{U}_{\mathcal{U}_{\mathbb{U}}}$.

References

- G. Artico, R. Moresco, Fuzzy proximities according with Lowen fuzzy uniformities, Fuzzy Sets and Systems 21 (1987), 85–98.
- M. H. Burton, The relationship between a fuzzy uniformity and its family of α-level uniformities, Fuzzy Sets and Systems 54 (1993), 311–316.
- J. Gutiérrez García, I. Mardones Pérez, M.H. Burton, The relationship between various filter notions on a GL-monoid, J. Math. Anal. Appl. 230 (1999), 291-302.
- J. Gutiérrez García, I. Mardones Pérez, J. Picado, M. A. de Prade Vicente, Uniform-type structures on lattice-valued spaces and frames, Fuzzy Sets and Systems (Article in press).
- 5. J. Gutiérrez García, M. A. de Prade Vicente, A.P. Šostak, A unified approach to the concept of fuzzy L-uniform spaces, Chapter 3 in [15], 81–114.
- U. Höhle, Probabilistic uniformization of fuzzy uniformities, Fuzzy Sets and Systems 1 (1978 311–332).
- U. Höhle, Probabilistic topologies induced by L-fuzzy uniformities, Manuscripta Math. 38 (1982), 289–323.
- 8. U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston (1995).
- U. Höhle, S. E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
- B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977), 559–571.
- Y.C. Kim, Y.S. Kim, Two types of uniform spaces, Int. J. Fuzzy Logic and Intelligent Systems 6(1) (2006), 77–84.
- Y.C. Kim, Y.S. Kim, Topologies induced by two types uniformities, J. Fuzzy Logic and Intelligent Systems 16(2) (2006), 252–257.
- 13. Y.C. Kim, S.J. Lee, *Categories of two types uniform spaces*, Int. J. Fuzzy Logic and Intelligent Systems **6(3)** (2006), 202–209.
- 14. W. Kotzé, Uniform spaces, Chapter 8 in [9], 553–580.
- 15. Liu Ying-Ming, Luo Mao-Kang, Fuzzy topology, World Scientific Publishing Co., Singapore (1997).
- 16. R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981), 370–385.
- S. E. Rodabaugh, E. P. Klement, *Topological And Algebraic Structures In Fuzzy Sets*, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20, Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
- S. E. Rodabaugh, Axiomatic foundations for uniform operator quasi-uniformities, Chapter 7 in [17], 199–233.

Department of Mathematics Natural Science,

189

Kangnung National University, Gangneung, Gangwondo, 210-702, Korea
 E-mail:yck@kangnung.ac.kr

Department of Mathematics Natural Science, Kangnung National University, Gangneung, Gangwondo, 210-702, Korea *E-mail*: jmko@kangnung.ac.kr