COVERING (L, \odot)-UNIFORMITIES AND HUTTON (L, \otimes)-UNIFORMITES

Y.C. Kim* and Jung Mi Ko

Abstract

In strictly two-sided, commutative quantale, we introduce the notion of Hutton (L, \otimes)-uniform spaces and covering (L, \odot)-uniform spaces and investigate the properties of them.

1. Introduction

Uniformities in fuzzy sets, have the entourage approach of Lowen [16] and Höhle [6-7] based on powersets of the form $L^{X \times X}$, the uniform covering approach of Kotzé [14] and the uniform operator approach of Rodabaugh [18] as generalization of Hutton [10] based on powersets of the form $\left(L^{X}\right)^{\left(L^{X}\right)}$. For a fixed basis L, algebraic structures in L (cqm-lattices, quantales, MV-algebras) are extended for a completely distributive lattice L or the unit interval or t-norms. Recently, Gutiérrez García et al.[5] introduced L-valued Hutton unifomity on GL-monoid and Kim et al. [11-13] studied $\operatorname{Hutton}(L, \otimes)$-unifomity and (L, \odot)-uniformity in a sense of the entourage approach on stscquantale.

In this paper, for a stsc-quantale (L, \odot) as a somewhat different aspect in $[4,5]$, we introduce the notion of (L, \odot)-covering uniformities in a sense García et al. [4-5] and Kotzé [14] based on coverings of L^{X} and Hutton (L, \otimes)-uniformities as a view point of the approach using uniform operators defined by Rodabaugh [18]. We investigate the relationship between Hutton (L, \otimes)-uniformities and covering (L, \odot) covering uniformities.

[^0]
2. Preliminaries

Definition $2.1[8,17]$. A triple (L, \leq, \odot) is called a strictly twosided, commutative quantale (stsc-quantale, for short) iff it satisfies the following properties:
(L1) $L=(L, \leq, \vee, \wedge, \top, \perp)$ is a completely distributive lattice where \top is the universal upper bound and \perp denotes the universal lower bound;
(L2) (L, \odot) is a commutative semigroup;
(L3) $a=a \odot \mathrm{~T}$, for each $a \in L$;
(L4) \odot is distributive over arbitrary joins, i.e.

$$
\left(\bigvee_{i \in \Gamma} a_{i}\right) \odot b=\bigvee_{i \in \Gamma}\left(a_{i} \odot b\right)
$$

Definition 2.2. Let $\Omega(X)$ be a subset of $\left(L^{X}\right)^{\left(L^{X}\right)}$ such that if it satisfies, $\phi \in \Omega(X)$,
(O1) $\phi\left(\bigvee_{i \in \Gamma} \lambda_{i}\right)=\bigvee_{i \in \Gamma} \phi\left(\lambda_{i}\right)$, for $\left\{\lambda_{i}\right\}_{i \in \Gamma} \subset L^{X}$.
(O2) $\lambda \leq \phi(\lambda)$ for all $\lambda \in L^{X}$.
Theorem 2.3 [11-13]. For $\phi, \phi_{1}, \phi_{2} \in \Omega(X)$, we define, for all $\lambda, \rho \in L^{X}$,

$$
\begin{gathered}
\phi_{1} \circ \phi_{2}(\lambda)=\phi_{1}\left(\phi_{2}(\lambda)\right) \\
\phi_{1} \otimes \phi_{2}(\lambda)=\bigwedge\left\{\phi_{1}\left(\lambda_{1}\right) \odot \phi_{2}\left(\lambda_{2}\right) \mid \lambda=\lambda_{1} \odot \lambda_{2}\right\} .
\end{gathered}
$$

Then the following properties hold:
(1) $\phi^{\leftarrow}(\rho)=\bigvee\left\{\lambda \in L^{X} \mid \phi(\lambda) \leq \rho\right\}$ such that ϕ^{\leftarrow} is a right adjoint of ϕ with $\phi \circ \phi \leftarrow(\rho) \leq \rho$ and $\lambda \leq \phi^{\leftarrow} \circ \phi(\lambda)$.
(2) $\phi_{1} \circ \phi_{2} \in \Omega(X)$ and $\phi_{1} \otimes \phi_{2} \in \Omega(X)$.
(3) $\phi_{1} \otimes \phi_{2} \leq \phi_{1}$ and $\phi_{1} \otimes \phi_{2} \leq \phi_{2}$.
(4) $\left(\phi_{1} \otimes \phi_{2}\right) \otimes \phi_{3}=\phi_{1} \otimes\left(\phi_{2} \otimes \phi_{3}\right)$.

Lemma 2.4 [11-13]. Let $f: X \rightarrow Y$ be a function. We define the image and preimage operators

$$
f^{\Rightarrow}:\left(L^{X}\right)^{\left(L^{X}\right)} \rightarrow\left(L^{Y}\right)^{\left(L^{Y}\right)}, f^{\Leftarrow}:\left(L^{Y}\right)^{\left(L^{Y}\right)} \rightarrow\left(L^{X}\right)^{\left(L^{X}\right)}
$$

such that for each $\psi \in\left(L^{Y}\right)^{\left(L^{Y}\right)}$ for all $\mu, \mu_{1}, \mu_{2} \in L^{X}, \rho_{1}, \rho_{2} \in L^{Y}$,

$$
f^{\Rightarrow}(\phi)(\rho)=\left(f^{\rightarrow} \circ \phi \circ f^{\leftarrow}\right)(\rho)=f^{\rightarrow}\left(\phi\left(f^{\leftarrow}(\rho)\right),\right.
$$

$$
f^{\leftarrow}(\psi)(\mu)=\left(f^{\leftarrow} \circ \psi \circ f^{\rightarrow}\right)(\mu)=f^{\leftarrow}\left(\psi\left(f^{\rightarrow}(\mu)\right)\right) .
$$

For each $\psi, \psi_{1}, \psi_{2} \in \Omega(Y)$ and $\phi_{1}, \phi_{2} \in \Omega(X)$, we have the following properties.
(1) The pair $\left(f^{\Rightarrow}, f^{\star}\right)$ is a Galois connection; i.e., $f^{\Rightarrow} \dashv f^{\star}$.
(2) $f \rightarrow\left(\mu_{1} \odot \mu_{2}\right) \leq f \rightarrow\left(\mu_{1}\right) \odot f^{\rightarrow}\left(\mu_{2}\right)$ with equality if f is injective and $f \leftarrow\left(\rho_{1} \odot \rho_{2}\right)=f \leftarrow\left(\rho_{1}\right) \odot f^{\leftarrow}\left(\rho_{2}\right)$.
(3) $f^{\leftarrow}(\psi) \in \Omega(X)$.
(4) If $\psi_{1} \leq \psi_{2}$, then $f^{\leftarrow}\left(\psi_{1}\right) \leq f^{\leftarrow}\left(\psi_{2}\right)$.
(5) $f^{\Leftarrow}\left(\psi_{1}\right) \circ f^{\Leftarrow}\left(\psi_{2}\right) \leq f^{\Leftarrow}\left(\psi_{1} \circ \psi_{2}\right)$ with equality if f is onto.
(6) $f^{\Leftarrow}\left(\psi_{1}\right) \otimes f^{\Leftarrow}\left(\psi_{2}\right)=f^{\Leftarrow}\left(\psi_{1} \otimes \psi_{2}\right)$.

Definition 2.5 [12]. A subset \mathbb{T} of L^{X} is called an (L, \odot)-topology on X if it satisfies the following conditions:
(T1) $1_{X}, 1_{\emptyset} \in \mathbb{T}$.
(T2) If $\lambda_{1}, \lambda_{2} \in \mathbb{T}$, then $\lambda_{1} \wedge \lambda_{2} \in \mathbb{T}$.
(T3) If $\lambda_{i} \in \mathbb{T}$ for all $i \in \Gamma$, then $\left(\bigvee_{i \in \Gamma} \lambda_{i}\right) \in \mathbb{T}$
(TO) If $\lambda_{1}, \lambda_{2} \in \mathbb{T}$, then $\lambda_{1} \odot \lambda_{2} \in \mathbb{T}$.
The pair (X, \mathbb{T}) is called an (L, \odot)-topological space.
Let $\left(X, \mathbb{T}_{1}\right)$ and $\left(Y, \mathbb{T}_{2}\right)$ be (L, \odot)-topological spaces. A function $f:\left(X, \mathbb{T}_{1}\right) \rightarrow\left(Y, \mathbb{T}_{2}\right)$ is L-continuous if $f^{\leftarrow}(\lambda) \in \mathbb{T}_{1}$, for every $\lambda \in \mathbb{T}_{2}$.

Theorem $2.6[15,17]$. Let (M, \leq) and (N, \leq) be a partially ordered set and $\phi: M \rightarrow N$ join-preserving map,i.e; $\phi\left(\bigvee x_{i}\right)=\bigvee \phi\left(x_{i}\right)$. ϕ has a right adjoint $\psi: N \rightarrow M$ as follows

$$
\psi(y)=\bigvee\{x \in M \mid \phi(x) \leq y\}
$$

Moreover, $\phi(x) \leq y$ iff $x \leq \psi(y)$. Equivalently, $i d_{M} \leq \psi \circ \phi$ and $\phi \circ \psi \leq i d_{N}$.

3. Covering (L, \odot)-uniformities and Hutton (L, \otimes)-uniformites

We define a somewhat different aspect of uniformities in [4], we introduce the notion of (L, \otimes)-uniformities as a view point of the approach using uniform operators defined by Rodabaugh [18].

A function $\phi \in \Omega(X)$ is called symmetric if it satisfies
(S) $\phi(\lambda) \odot \mu \neq \overline{0}$ iff $\lambda \odot \phi(\mu) \neq \overline{0}$, for each $\lambda, \mu \in L^{X}$.

Definition 3.1. A nonempty subset \mathbb{U} of $\Omega(X)$ is called a Hutton (L, \otimes)-uniformity on X if it satisfies the following conditions:
(U1) If $\phi \leq \psi$ with $\phi \in \mathbb{U}$ and $\psi \in \Omega(X)$, then $\psi \in \mathbb{U}$.
(U2) For each $\phi \in \mathbb{U}$, there exists $\psi \in \mathbb{U}$ such that $\psi \circ \psi \leq \phi$.
(U3) For each $\phi, \psi \in \mathbb{U}, \phi \otimes \psi \in \mathbb{U}$.
(U4) For each $\phi \in \mathbb{U}$, there exists a symmetric $\psi \in \mathbb{U}$ such that $\psi \leq \phi$.

The pair (X, \mathbb{U}) is called a Hutton (L, \otimes)-uniform space. Let \mathbb{U}_{1} and \mathbb{U}_{2} be Hutton (L, \otimes)-uniformites on X. If $\mathbb{U}_{1} \subset \mathbb{U}_{2}, \mathbb{U}_{2}$ is called finer than \mathbb{U}_{1}.

Let $\left(X, \mathbb{U}_{1}\right)$ and $\left(Y, \mathbb{U}_{2}\right)$ be Hutton (L, \otimes)-uniform spaces. A function $f:\left(X, \mathbb{U}_{1}\right) \rightarrow\left(Y, \mathbb{U}_{2}\right)$ is H-uniformly continuous if $f^{\leftarrow}(\psi) \in \mathbb{U}_{1}$, for every $\psi \in \mathbb{U}_{2}$.

Theorem 3.2. Let \mathbb{U} be a Hutton (L, \otimes)-uniformity on X. We define a subset $\mathbb{T}_{\mathbb{U}}$ of L^{X} as follows:

$$
\mathbb{T}_{\mathbb{U}}=\left\{\rho \in L^{X} \mid \exists \phi \in \mathbb{U}, \phi(\rho)=\rho\right\} .
$$

Then $\mathbb{T}_{\mathbb{U}}$ is an (L, \odot)-topology on X induced by \mathbb{U}.
Proof. (T1). Since $\phi(\overline{0})=\overline{0}$ and $\phi(\overline{1})=\overline{1}$ for all $\phi \in \mathbb{U}$, we have $\overline{0}, \overline{1} \in \mathbb{T}_{\mathbb{U}}$.
(T2) and (TO). Let $\lambda_{i} \in \mathbb{T}_{\mathbb{U}}$ for $i=1,2$. Then $\phi_{i} \in \mathbb{T}_{\mathbb{U}}$ such that $\phi_{i}\left(\lambda_{i}\right)=\lambda_{i}$. Since $\overline{1} \odot\left(\lambda_{1} \wedge \lambda_{2}\right)=\lambda_{1} \wedge \lambda_{2}$, we have

$$
\begin{aligned}
\left(\phi_{1} \otimes \phi_{2}\right)\left(\lambda_{1} \wedge \lambda_{2}\right) & \leq \phi_{1}\left(\lambda_{1} \wedge \lambda_{2}\right) \wedge \phi_{2}\left(\lambda_{1} \wedge \lambda_{2}\right) \\
& \leq \phi_{1}\left(\lambda_{1}\right) \wedge \phi_{2}\left(\lambda_{2}\right)=\lambda_{1} \wedge \lambda_{2} \\
\left(\phi_{1} \otimes \phi_{2}\right)\left(\lambda_{1} \odot \lambda_{2}\right) & \leq \phi_{1}\left(\lambda_{1}\right) \odot \phi_{2}\left(\lambda_{2}\right) \leq \lambda_{1} \odot \lambda_{2}
\end{aligned}
$$

So, $\lambda_{1} \wedge \lambda_{2}, \lambda_{1} \odot \lambda_{2} \in \mathbb{T}_{\mathbb{U}}$.
(T3) Let $\lambda_{i} \in \mathbb{T}_{\mathbb{U}}$ for $i \in \Gamma$. Then, for each $i \in \Gamma$, there exists $\phi_{i} \in \mathbb{U}$ such that $\phi_{i}\left(\lambda_{i}\right)=\lambda_{i}$.

Suppose that $\phi\left(\bigvee_{i \in \Gamma} \lambda_{i}\right) \not \mathbb{Z} \bigvee_{i \in \Gamma} \lambda_{i}$ for all $\phi \in \mathbb{U}$. Since
$\phi\left(\bigvee_{i \in \Gamma} \lambda_{i}\right)=\bigvee_{i \in \Gamma} \phi\left(\lambda_{i}\right)$, there exists $\left\{i_{1}, i_{2}, \ldots i_{m}\right\} \subset \Gamma$ such that

$$
\phi\left(\vee_{k=1}^{m} \lambda_{i_{k}}\right) \not \leq \bigvee_{i \in \Gamma} \lambda_{i} .
$$

Put $\phi=\otimes_{k=1}^{m} \phi_{i_{k}}$. Then

$$
\begin{aligned}
\otimes_{k=1}^{m} \phi_{i_{k}}\left(\vee_{k=1}^{m} \lambda_{i_{k}}\right) & =\vee_{k=1}^{m}\left(\otimes_{k=1}^{m} \phi_{i_{k}}\right)\left(\lambda_{i_{k}}\right) \leq \vee_{k=1}^{m} \phi_{i_{k}}\left(\lambda_{i_{k}}\right) \\
& \leq \vee_{k=1}^{m} \lambda_{i_{k}} \leq \bigvee_{i \in \Gamma} \lambda_{i} .
\end{aligned}
$$

It is a contradiction. Hence there exists $\phi \in \mathbb{U}$ such that $\phi\left(\bigvee_{i \in \Gamma} \lambda_{i}\right)=$ $\bigvee_{i \in \Gamma} \lambda_{i}$. Hence $\bigvee_{i \in \Gamma} \lambda_{i} \in \mathbb{T}_{\mathbb{U}}$.

Example 3.3. Let $X=\{x, y, z\}$ be a set and $([0,1], \odot)$ a quantale defined by $x \odot y=0 \vee(x+y-1)$. Define $\phi \in \Omega(X)$ as

$$
\phi(\lambda)= \begin{cases}\overline{0} & \text { if } \lambda=\overline{0} \\ 1_{\{x, y\}} & \text { if } \overline{0} \neq \lambda \leq 1_{\{x, y\}} \\ 1_{\{z\}}, & \text { if } \overline{0} \neq \lambda \leq 1_{\{z\}} \\ \overline{1} & \text { otherwise }\end{cases}
$$

where $1_{\{x, y\}}$ and $1_{\{z\}}$ are characteristic functions. We have $(\phi \otimes \phi)=\phi$, $\phi \circ \phi=\phi$ and ϕ is symmetric. Thus, $\mathbb{U}=\{\psi \in \Omega(X) \mid \phi \leq \psi\}$ is a Hutton (L, \otimes)-uniformity on X. From Theorem 3.2, we obtain an (L, \odot)-topology on X as follows:

$$
\mathbb{T}_{\mathbb{U}}=\left\{\overline{0}, \overline{1}, 1_{\{x, y\}}, 1_{\{z\}}\right\}
$$

Theorem 3.4. Let (Y, \mathbb{U}) be a Hutton (L, \otimes)-uniform space, X a set and $f: X \rightarrow Y$ a function. Define a subset $f \Leftarrow(\mathbb{U})$ of $\Omega(X)$ as follows:

$$
f^{\Leftarrow}(\mathbb{U})=\left\{\phi \in \Omega(X) \mid \exists \psi \in \mathbb{U}, \quad f^{\Leftarrow}(\psi) \leq \phi\right\} .
$$

Then we have the following properties.
(1) If ψ is symmetric, $f^{\Leftarrow}(\psi)$ is symmetric.
(2) The structure $f^{\Leftarrow}(\mathbb{U})$ is the coarsest Hutton (L, \otimes)-uniformity on X for which f is H-uniformly continuous.
(3) A map $g:\left(Z, \mathbb{U}_{1}\right) \rightarrow(X, f \Leftarrow(\mathbb{U}))$ is H-uniformly continuous iff $f \circ g:\left(Z, \mathbb{U}_{1}\right) \rightarrow(Y, \mathbb{U})$ is H-uniformly continuous.

Proof. (1) For $f^{\Leftarrow}(\psi)(\lambda) \odot \mu \neq \overline{0}$, we have

$$
\begin{aligned}
\overline{0} \neq f^{\rightarrow}\left(f^{\Leftarrow}(\psi)(\lambda) \odot \mu\right) & \leq f^{\rightarrow}\left(f^{\Leftarrow}(\lambda)\right) \odot f^{\rightarrow}(\mu) \\
& \leq \psi\left(f^{\rightarrow}(\lambda)\right) \odot f^{\rightarrow}(\mu) .
\end{aligned}
$$

By the symmetric of $\psi, f^{\rightarrow}(\lambda) \odot \psi(f \rightarrow(\mu)) \neq \overline{0}$, there exists $x \in X$ such that

$$
f^{\rightarrow}(\lambda)(f(x)) \odot \psi\left(f^{\rightarrow}(\mu)\right)(f(x)) \neq \overline{0} .
$$

It implies $\lambda(x) \odot f^{\Leftarrow}(\psi)(\mu)(x) \neq 0$. Hence $\lambda \odot f^{\Leftarrow}(\psi)(\mu) \neq \overline{0}$. So, f^{\Leftarrow} is symmetric.
(2) First, we will show that $f^{\leftarrow}(\mathbb{U})$ is a Hutton (L, \otimes)-uniformity on X.
(U1) Obvious.
(U2) For each $\phi \in f^{\Leftarrow}(\mathbb{U})$, there exists $\psi \in \mathbb{U}$ with $f^{\leftarrow}(\psi) \leq \phi$. For $\psi \in \mathbb{U}$, since (Y, \mathbb{U}) is a Hutton (L, \otimes)-uniform space, by (U2), there exists $\gamma \in \mathbb{U}$ with $\gamma \circ \gamma \leq \psi$. By Lemma 2.4(5), since

$$
f^{\Leftarrow}(\gamma) \circ f^{\Leftarrow}(\gamma) \leq f^{\Leftarrow}(\gamma \circ \gamma) \leq f^{\Leftarrow}(\psi) \leq \phi,
$$

then $f^{\Leftarrow}(\gamma) \in f^{\Leftarrow}(\mathbb{U})$.
(U3) If $\phi_{i} \in f^{\leftarrow}(\mathbb{U})$, for $i=1,2$, there exists $\psi_{i} \in \mathbb{U}$ with $f^{\Leftarrow}\left(\psi_{i}\right) \leq$ ϕ_{i}. Since $f^{\kappa}\left(\psi_{1}\right) \otimes f^{\kappa}\left(\psi_{2}\right)=f^{\kappa}\left(\psi_{1} \otimes \psi_{2}\right) \leq \phi_{1} \otimes \phi_{2}$ from Lemma 2.4(6), we have $\phi_{1} \otimes \phi_{2} \in f \Leftarrow(\mathbb{U})$.
(U4) By (1), it is easily proved.
Second, by definition of $f^{\Leftarrow}(\mathbb{U}), f^{\Leftarrow}(\psi) \in f^{\Leftarrow}(\mathbb{U})$, for all $\psi \in \mathbb{U}$. Hence $f:(X, f \Leftarrow(\mathbb{U})) \rightarrow(Y, \mathbb{U})$ is H-uniformly continuous.

Finally, let $f:\left(X, \mathbb{U}_{1}\right) \rightarrow(Y, \mathbb{U})$ be H-uniformly continuous. For each $\phi \in f^{\leftarrow}=(\mathbb{U})$, there exists $\psi \in \mathbb{U}$ with $f^{\Leftarrow}(\psi) \leq \phi$. Since $f^{\Leftarrow}(\psi) \in$ \mathbb{U}_{1}, then $\phi \in \mathbb{U}_{1}$. Hence $f^{\kappa}(\mathbb{U}) \subset \mathbb{U}_{1}$.
(3) Necessity of the composition condition is clear since the composition of H-uniformly continuous maps is H-uniformly continuous.

If $\phi \in f^{\Leftarrow}(\mathbb{U})$, there exists $\psi \in \mathbb{U}$ such that $f^{\Leftarrow}(\psi) \leq \phi$. Since $f \circ g$ is H-uniformly continuous, for $\psi \in \mathbb{U}$,

$$
(f \circ g)^{\Leftarrow}(\psi)=g^{\Leftarrow} \circ f^{\kappa}(\psi) \in \mathbb{U}_{1} .
$$

Since $g^{\leftarrow}(\phi) \geq g^{\Leftarrow} \circ f^{\kappa}(\psi) \in \mathbb{U}_{1}$, we have $g^{\leftarrow}(\phi) \in \mathbb{U}_{1}$.

A subset C of L^{X} is a cover of X if $\bigvee\{\lambda \mid \lambda \in C\}=1_{X}$. For any cover C_{1}, C_{2}, we denote $C_{1} \leq C_{2}$ if each $\lambda \in C_{1}$, there exists $\mu \in C_{2}$ such that $\lambda \leq \mu$. We denote $C(X)$ as the collections of all covering of X.

Theorem 3.5. Let $f: X \rightarrow Y$ be a function. For $C, C_{1}, C_{2} \subset L^{X}$ and $\lambda, \mu \in L^{X}$, we define

$$
\begin{gathered}
s t(\lambda, C)=\bigvee\{\mu \in C \mid \mu \odot \lambda \neq \emptyset\}, \\
s t(C)=\{s t(\lambda, C) \mid \lambda \in C\}, \\
C_{1} \odot C_{2}=\left\{\lambda_{1} \odot \lambda_{2} \mid \lambda_{i} \in C_{i}, i=1,2\right\} .
\end{gathered}
$$

Then we have the following properties:
(1) If C is a cover, then $\lambda \leq \operatorname{st}(\lambda, C)$ and $C \leq \operatorname{st}(C)$.
(2) If C_{1} and C_{2} are covers, then $C_{1} \odot C_{2}$ and $C_{1} \wedge C_{2}$ are covers.
(3) If $\lambda \leq \mu$, then $s t(\lambda, C) \leq s t(\mu, C)$.
(4) If $C_{1} \leq C_{2}$, then $\operatorname{st}\left(\lambda, C_{1}\right) \leq \operatorname{st}\left(\lambda, C_{2}\right)$.
(5) $s t\left(\lambda \odot \mu, C_{1} \odot C_{2}\right) \leq s t\left(\lambda, C_{1}\right) \odot s t\left(\mu, C_{2}\right)$.
(6) $\operatorname{st}\left(\bigvee \lambda_{i}, C\right)=\bigvee \operatorname{st}\left(\lambda_{i}, C\right)$.
(7) $\operatorname{st}(s t(\lambda, C), C) \leq \operatorname{st}(\lambda, s t(C))$.
(8) $f \rightarrow(s t(\lambda, C)) \leq \operatorname{st}(f \rightarrow(\lambda), f \rightarrow(C))$.
(9) $f \rightarrow(s t(C)) \leq s t(f \rightarrow(C))$.
(10) $\operatorname{st}(f \leftarrow(\lambda), f \leftarrow(C))) \leq f \leftarrow(s t(\lambda, C))$.
(11) $\operatorname{st}(f \leftarrow(C)) \leq f^{\leftarrow}(\operatorname{st}(C))$.

Proof. (5) Suppose $s t\left(\lambda \odot \mu, C_{1} \odot C_{2}\right) \not \leq s t\left(\lambda, C_{1}\right) \odot s t\left(\mu, C_{2}\right)$. By the definition of $\operatorname{st}\left(\lambda \odot \mu, C_{1} \odot C_{2}\right)$, there exist $\rho_{i} \in C_{i}$ for $i=1,2$, with $\left(\rho_{1} \odot \rho_{2}\right) \odot(\lambda \odot \mu) \neq \overline{0}$ such that

$$
\rho_{1} \odot \rho_{2} \not \leq s t\left(\lambda, C_{1}\right) \odot s t\left(\mu, C_{2}\right)
$$

Since $\left(\rho_{1} \odot \rho_{2}\right) \odot(\lambda \odot \mu) \neq \overline{0}$ implies $\rho_{1} \odot \lambda \neq \overline{0}$ and $\rho_{2} \odot \mu \neq \overline{0}$, we have $\operatorname{st}\left(\lambda, C_{1}\right) \odot \operatorname{st}\left(\mu, C_{2}\right) \geq \rho_{1} \odot \rho_{2}$. It is a contradiction. Hence $s t\left(\lambda \odot \mu, C_{1} \odot C_{2}\right) \leq s t\left(\lambda, C_{1}\right) \odot s t\left(\mu, C_{2}\right)$.
(8) Since $\lambda \odot \rho \neq \overline{0}$ implies $f \rightarrow(\lambda) \odot f^{\rightarrow}(\rho) \geq f^{\rightarrow}(\lambda \odot \rho) \neq \overline{0}$, we have

$$
\begin{aligned}
f^{\rightarrow}(s t(\lambda, C)) & =f^{\rightarrow}(\bigvee\{\rho \mid \rho \odot \lambda \neq \overline{0}, \rho \in C\}) \\
& =\bigvee\left\{f^{\rightarrow}(\rho) \mid \rho \odot \lambda \neq \overline{0}, \rho \in C\right\} \\
& \leq \bigvee\left\{f^{\rightarrow}(\rho) \mid f^{\rightarrow}(\rho) \odot f^{\rightarrow}(\lambda) \neq \overline{0}, \rho \in C\right\} \\
& =\operatorname{st}\left(f^{\rightarrow}(\lambda), f^{\rightarrow}(C)\right) .
\end{aligned}
$$

Other cases follow from Proposition 3.2 in [4].

Example 3.6. Let $X=\{x, y, z\}$ be a set and $([0,1], \odot)$ a stscquantale defined by $a \odot b=0 \vee(a+b-1)$. Let $C=\left\{\rho_{i} \in[0,1]^{X} \mid i=\right.$ $1,2,3\}$ be a cover where

$$
\begin{gathered}
\rho_{1}(x)=0.3, \rho_{1}(y)=1, \rho_{1}(z)=0, \quad \rho_{2}(x)=1, \rho_{2}(y)=0.2, \rho_{2}(z)=0, \\
\rho_{3}(x)=0, \rho_{3}(y)=0, \rho_{3}(z)=1 .
\end{gathered}
$$

We obtain

$$
\begin{aligned}
C \odot C & =\left\{\rho_{1} \odot \rho_{1}=1_{\{y\}}, \rho_{2} \odot \rho_{2}=1_{\{x\}}, \rho_{1} \odot \rho_{2}, \rho_{3}\right\} \\
1_{\{x, y\}} & =\operatorname{st}\left(\rho_{1} \odot \rho_{2}, C \odot C\right) \leq \operatorname{st}\left(\rho_{1}, C\right) \odot \operatorname{st}\left(\rho_{2}, C\right) \\
& =1_{\{x, y\}} \odot 1_{\{x, y\}}=1_{\{x, y\}} .
\end{aligned}
$$

Since $\operatorname{st}\left(\rho_{1}, C\right)=\operatorname{st}\left(\rho_{2}, C\right)=1_{\{x, y\}}, s t\left(\rho_{3}, C\right)=1_{\{z\}}$, we obtain

$$
\operatorname{st}(C)=\left\{1_{\{x, y\}}, 1_{\{z\}}\right\}, \quad C \leq \operatorname{st}(C)
$$

Definition 3.7. A nonempty family \mathcal{U} of L-covers of X is called a covering (L, \odot)-uniformity on X if it satisfies the following conditions:
(UC1) If $C_{1} \leq C_{2}$ and $C_{1} \in \mathcal{U}$, then $C_{2} \in \mathcal{U}$.
(UC2) For each $C_{1}, C_{2} \in \mathcal{U}, C_{1} \odot C_{2} \in \mathcal{U}$.
(UC3) For each $C_{1} \in \mathcal{U}$, there exists $C_{2} \in \mathcal{U}$ such that $\operatorname{st}\left(C_{2}\right) \leq C_{1}$.

The pair (X, \mathcal{U}) is said to be a covering (L, \odot)-uniform space.
Let \mathcal{U}_{1} and \mathcal{U}_{2} be covering (L, \odot)-uniformites on X. If $\mathcal{U}_{1} \subset \mathcal{U}_{2}, \mathcal{U}_{2}$ is called finer than \mathcal{U}_{1}.

The pair (X, \mathcal{B}) is said to be a covering (L, \odot)-uniform base if it satisfies (UC2) and (UC3).

Let $\left(X, \mathcal{U}_{1}\right)$ and $\left(Y, \mathcal{U}_{2}\right)$ be covering (L, \odot)-uniform spaces. A function $f:\left(X, \mathcal{U}_{1}\right) \rightarrow\left(Y, \mathcal{U}_{2}\right)$ is C-uniformly continuous if $f \leftarrow(C) \in \mathcal{U}_{1}$, for every $C \in \mathcal{U}_{2}$.

Theorem 3.8. Let (X, \mathcal{U}) be a covering (L, \odot)-uniform space. We define $I_{\mathcal{U}}: L^{X} \rightarrow L^{X}$ as follows:

$$
\begin{gathered}
I_{\mathcal{U}}(\lambda)=\bigvee\left\{\rho \in L^{X} \mid \operatorname{st}(\rho, C) \leq \lambda, \exists C \in \mathcal{U}\right\} \\
\operatorname{st}(C)=\{\operatorname{st}(\lambda, C) \mid \lambda \in C\}
\end{gathered}
$$

Then we have the following properties:
(1) $I_{\mathcal{U}}(\overline{1})=\overline{1}$.
(2) $I_{\mathcal{U}}(\lambda) \leq \lambda$.
(3) $I_{\mathcal{U}}\left(I_{\mathcal{U}}(\lambda)\right)=I_{\mathcal{U}}(\lambda)$.
(4) $I_{\mathcal{U}}(\lambda \wedge \mu) \geq I_{\mathcal{U}}(\lambda) \wedge I_{\mathcal{U}}(\mu)$.
(5) $I_{\mathcal{U}}(\lambda \odot \mu) \geq I_{\mathcal{U}}(\lambda) \odot I_{\mathcal{U}}(\mu)$.

Proof. (5) Suppose $I_{\mathcal{U}}(\lambda \odot \mu) \nsupseteq I_{\mathcal{U}}(\lambda) \odot I_{\mathcal{U}}(\mu)$. By the definition of $I_{\mathcal{U}}(\lambda)$ and $I_{\mathcal{U}}(\mu)$, there exist $\rho_{i} \in C_{i}$ and $C_{i} \in \mathcal{U}$ for $i=1,2$ with $\operatorname{st}\left(\rho_{1}, C_{1}\right) \leq \lambda$ and $\operatorname{st}\left(\rho_{2}, C_{2}\right) \leq \mu$ such that

$$
I_{\mathcal{U}}(\lambda \odot \mu) \nsupseteq \rho_{1} \odot \rho_{2}
$$

Since

$$
s t\left(\rho_{1} \odot \rho_{2}, C_{1} \odot C_{2}\right) \leq \operatorname{st}\left(\rho_{1}, C_{1}\right) \odot \operatorname{st}\left(\rho_{1}, C_{2}\right) \leq \lambda \odot \mu,
$$

we have $I_{\mathcal{U}}(\lambda \odot \mu) \nsupseteq \rho_{1} \odot \rho_{2}$. It is a contradiction. Hence $I_{\mathcal{U}}(\lambda \odot \mu) \geq$ $I_{\mathcal{U}}(\lambda) \odot I_{\mathcal{U}}(\mu)$.

Other cases follows from Proposition 3.4 in [4].

Theorem 3.9. Let \mathcal{U} be a covering (L, \odot)-uniformity on X. Then the following properties hold:
(1) We define a subset $\mathbb{T}_{\mathcal{U}}$ of L^{X} as follows:

$$
\mathbb{T}_{\mathcal{U}}=\left\{\rho \in L^{X} \mid \exists C \in \mathcal{U}, \operatorname{st}(\rho, C)=\rho\right\} .
$$

Then $\mathbb{T}_{\mathcal{U}}$ is an (L, \odot)-topology on X induced by \mathcal{U}.
(2) We define a subset $\mathbb{T}_{I_{U}}$ of L^{X} as follows:

$$
\mathbb{T}_{I_{\mathcal{U}}}=\left\{\rho \in L^{X} \mid I_{\mathcal{U}}(\rho) \geq \rho\right\} .
$$

Then $\mathbb{T}_{I_{\mathcal{U}}}$ is an (L, \odot)-topology on X induced by $I_{\mathcal{U}}$.
(3) $\mathbb{T}_{I_{\mathcal{U}}}=\mathbb{T}_{\mathcal{U}}$.

Proof. (1) (T1) Since $s t(\overline{0}, C)=\overline{0}$ and $s t(\overline{1}, C)=\overline{1}$ for all $C \in \mathcal{U}$, we have $\overline{0}, \overline{1} \in \mathbb{T}_{\mathcal{U}}$.
(T2) and (TO). Let $\lambda_{i} \in \mathbb{T}_{\mathcal{U}}$ for $i=1,2$. Then $C_{i} \in \mathcal{U}$ such that $s t\left(\lambda_{i}, C_{i}\right)=\lambda_{i}$. Since

$$
\begin{aligned}
& s t\left(\lambda_{1} \wedge \lambda_{2}, C_{1} \wedge C_{2}\right) \leq \operatorname{st}\left(\lambda_{1}, C_{1}\right) \wedge \operatorname{st}\left(\lambda_{2}, C_{2}\right)=\lambda_{1} \wedge \lambda_{2}, \\
& \operatorname{st}\left(\lambda_{1} \odot \lambda_{2}, C_{1} \odot C_{2}\right) \leq \operatorname{st}\left(\lambda_{1}, C_{1}\right) \odot \operatorname{st}\left(\lambda_{2}, C_{2}\right)=\lambda_{1} \odot \lambda_{2}
\end{aligned}
$$

we have $\lambda_{1} \wedge \lambda_{2}, \lambda_{1} \odot \lambda_{2} \in \mathbb{T}_{\mathcal{U}}$.
(T3) Let $\lambda_{i} \in \mathbb{T}_{\mathcal{U}}$ for $i \in \Gamma$. Then, for each $i \in \Gamma$, there exists $C_{i} \in \mathcal{U}$ such that $s t\left(\lambda_{i}, C_{i}\right)=\lambda_{i}$.

Suppose that $\operatorname{st}\left(\bigvee_{i \in \Gamma} \lambda_{i}, C\right) \not \leq \bigvee_{i \in \Gamma} \lambda_{i}$ for all $C \in \mathcal{U}$. Since $s t\left(\bigvee \lambda_{i}, C\right)=\bigvee \operatorname{st}\left(\lambda_{i}, C\right)$, there exists $\left\{i_{1}, i_{2}, \ldots i_{m}\right\} \subset \Gamma$ such that

$$
\operatorname{st}\left(\bigvee_{k=1}^{m} \lambda_{i_{k}}, C\right) \not \leq \bigvee_{i \in \Gamma} \lambda_{i}
$$

Put $C=\odot_{k=1}^{m} C_{i_{k}}$. Then

$$
\begin{aligned}
s t\left(\vee_{k=1}^{m} \lambda_{i_{k}}, \odot_{k=1}^{m} C_{i_{k}}\right) & =\vee_{k=1}^{m} \operatorname{st}\left(\lambda_{i_{k}}, \odot_{k=1}^{m} C_{i_{k}}\right) \\
& \leq \vee_{k=1}^{m} \operatorname{st}\left(\lambda_{i_{k}}, C_{i_{k}}\right) \\
& =\vee_{k=1}^{m} \lambda_{i_{k}} \leq \bigvee_{i \in \Gamma} \lambda_{i} .
\end{aligned}
$$

It is a contradiction. Thus, there exists $C \in \mathcal{U}$ such that
$s t\left(\bigvee_{i \in \Gamma} \lambda_{i}, C\right)=\bigvee_{i \in \Gamma} \lambda_{i}$. Hence $\bigvee_{i \in \Gamma} \lambda_{i} \in \mathbb{T}_{\mathcal{U}}$.
(2) (T1) Since $I_{\mathcal{U}}(\overline{1})=\overline{1}$ and $I_{\mathcal{U}}(\overline{0})=\overline{0}$, then $\overline{0}, \overline{1} \in \mathbb{T}_{I_{\mathcal{U}}}$.
(T2) If $\lambda_{i} \in \mathbb{T}_{I_{\mathcal{U}}}$ for each $i=1,2$, by Theorem 3.8 (4-5), $\lambda_{1} \wedge \lambda_{2}, \lambda_{1} \odot$ $\lambda_{2} \in \mathbb{T}_{I_{U}}$.
(T3) Let $\lambda_{i} \in \mathbb{T}_{I_{\mathcal{U}}}$ for $i \in \Gamma$. Since

$$
I_{\mathcal{U}}\left(\bigvee_{i \in \Gamma} \lambda_{i}\right) \geq \bigvee_{i \in \Gamma} I_{\mathcal{U}}\left(\lambda_{i}\right) \geq \bigvee_{i \in \Gamma} \lambda_{i}
$$

we have $\bigvee_{i \in \Gamma} \lambda_{i} \in \mathbb{T}_{I_{u}}$.
(3) Let $\rho \in \mathbb{T}_{\mathcal{U}}$. Then $C \in \mathcal{U}$ with $\operatorname{st}(\rho, C)=\rho$. So, $I_{\mathcal{U}}(\rho)=\rho$. Hence $\rho \in \mathbb{T}_{I_{\mathcal{U}}}$.

Let $\lambda \in \mathbb{T}_{I_{\mathcal{U}}}$. Then $I_{\mathcal{U}}(\lambda) \geq \lambda$. For all $s t\left(\rho_{i}, C_{i}\right) \leq \lambda, \bigvee_{i \in \Gamma} \rho_{i}=\lambda$. Hence $\bigvee_{i \in \Gamma} \rho_{i}=\bigvee_{i \in \Gamma} s t\left(\rho_{i}, C_{i}\right)=\lambda$. By a similar proof as in (1), there exists $C \in \mathcal{U}$ such that $\operatorname{st}\left(\bigvee_{i \in \Gamma} \rho_{i}, C\right)=\bigvee_{i \in \Gamma} \rho_{i}=\lambda$. So, $\lambda \in \mathbb{T}_{\mathcal{U}}$.

Theorem 3.10. Let (Y, \mathcal{B}) be a covering (L, \odot)-uniform base, X a set and $f: X \rightarrow Y$ a function. Define a subset $f \leftarrow(\mathcal{B})$ of $C(X)$ as follows:

$$
f^{\leftarrow}(\mathcal{B})=\left\{f^{\leftarrow}(C) \mid C \in \mathcal{B}\right\} .
$$

Then we have the following properties.
(1) The structure $f^{\Leftarrow}(\mathcal{B})$ is a covering (L, \odot)-uniform base on X.
(2) The structure $\left[f^{\kappa}(\mathcal{B})\right]=\left\{C \in C(X) \mid f^{\kappa}(B) \leq C, B \in \mathcal{B}\right\}$ is the coarsest covering (L, \odot)-uniform base on X for which f is C uniformly continuous.
(3) A map $g:\left(Z, \mathcal{U}_{1}\right) \rightarrow(X,[f \Leftarrow(\mathcal{U})]$ is C-uniformly continuous iff $f \circ g:\left(Z, \mathcal{U}_{1}\right) \rightarrow(Y, \mathcal{U})$ is C-uniformly continuous.

Proof. (1) (UC2) It follows from $f \leftarrow\left(C_{1} \odot C_{2}\right)=f \leftarrow\left(C_{1}\right) \odot f \leftarrow\left(C_{2}\right)$.
(UC3) For each $f \leftarrow(C) \in f \leftarrow(\mathcal{B})$ with $C \in \mathcal{B}$, there exists $C_{1} \in \mathcal{B}$ such that $\operatorname{st}\left(C_{1}\right) \leq C$. Since $\operatorname{st}\left(f \leftarrow\left(C_{1}\right)\right) \leq f \leftarrow\left(s t\left(C_{1}\right)\right) \leq f \leftarrow(C)$, $f \leftarrow(\mathcal{B})$ is a covering (L, \odot)-uniform base on X.
(2) and (3) are similarly proved as in Theorem 3.4.

Example 3.11. Let $Z=\{a, b, c, d\}$ and $X=\{x, y, z\}$ be a set and $([0,1], \odot)$ a stsc-quantale defined by $a \odot b=0 \vee(a+b-1)$. Let $f: Z \rightarrow X$ be a function as $f(a)=x, f(b)=y, f(c)=f(d)=z$. Let $\mathcal{U}=\left\{C \in C(X) \mid C_{1}=\left\{1_{\{x, y\}}, 1_{\{z\}}\right\} \leq C\right\}$ be a covering (L, \odot) uniformity on X. Then $f \leftarrow(\mathcal{U})=\left\{f^{\leftarrow}(C) \in C(Z) \mid C \in \mathcal{U}\right\}$ is not a covering (L, \odot)-uniformity on X because, for $\rho(a)=\rho_{1}(b)=1, \rho(c)=$ $0.3, \rho(d)=0$,

$$
f^{\rightarrow}\left(1_{\{x, y\}}\right) \leq \rho, \quad \rho \notin f^{\leftarrow}(\mathcal{B}) .
$$

4. Covering (L, \odot) uniformities and Hutton (L, \otimes)-uniformites

Theorem 4.1. We define a mapping $\Delta: C(X) \rightarrow \Omega(X)$ as follows:

$$
\Delta(C)(\lambda)=\operatorname{st}(\lambda, C)=\bigvee\{\mu \in C \mid \mu \odot \lambda \neq \emptyset\}
$$

Then we have the following properties:
(1) For each $C \in C(X), \Delta(C) \in \Omega(X)$.
(2) $\Delta(C)$ has a right adjoint mapping $\Delta(C)^{\leftarrow}$ defined by

$$
\Delta(C)^{\leftarrow}(\lambda)=\bigvee\left\{\rho \in L^{X} \mid \operatorname{st}(\rho, C) \leq \lambda\right\} .
$$

It follows $\Delta(C) \leftarrow \circ \Delta(C) \geq 1_{L^{x}}$ and $\Delta(C) \circ \Delta(C)^{\leftarrow} \leq 1_{L^{x}}$. Furthermore, $\Delta(C)(\lambda) \leq \rho$ iff $\lambda \leq \Delta(C) \leftarrow(\rho)$.
(3) Δ has a right adjoint mapping $\Sigma: \Omega(X) \rightarrow C(X)$ as follows:

$$
\Sigma(\phi)=\{\phi(\lambda) \mid \lambda \odot \phi(\lambda) \neq \emptyset\} .
$$

It implies $\Sigma \circ \Delta \geq 1_{C(X)}$ and $\Delta \circ \Sigma \leq 1_{\Omega(X)}$.
Proof. (1) It follows from: $\Delta(C)\left(\bigvee \lambda_{i}\right)=s t\left(\bigvee \lambda_{i}, C\right)=\bigvee \operatorname{st}\left(\lambda_{i}, C\right)=$ $\bigvee \Delta(C)\left(\lambda_{i}\right)$ and $\Delta(C)(\lambda)=s t(\lambda, C) \geq \lambda$.
(2) By (1) and Theorem 2.6, $\Delta(C)$ has a right adjoint mapping $\Delta(C) \rightarrow$ as follows:

$$
\Delta(C)^{\leftarrow}(\lambda)=\bigvee\left\{\rho \in L^{X} \mid \operatorname{st}(\rho, C) \leq \lambda\right\}
$$

By Theorem 2.6, the results hold.
(6) Since $\Delta\left(\bigvee C_{i}\right)(\lambda)=\operatorname{st}\left(\lambda, \bigvee C_{i}\right)=\bigvee \operatorname{st}\left(\lambda, C_{i}\right)=\bigvee \Delta\left(C_{i}\right)(\lambda)$, we have $\Delta\left(\bigvee C_{i}\right)=\bigvee \Delta\left(C_{i}\right)$. By Theorem 2.6, Δ has a right adjoint mapping Σ as follows:

$$
\begin{aligned}
\Sigma(\phi) & =\bigvee\{C \in C(X) \mid \Delta(C) \leq \phi\} \\
& =\bigvee\{C \in C(X) \mid \Delta(C)(\lambda) \leq \phi(\lambda)\} \\
& =\bigvee\{C \in C(X) \mid s t(\lambda, C) \leq \phi(\lambda)\} \\
& =\bigvee\left\{C \in C(X) \mid \bigvee_{i} \mu_{i} \leq \phi(\lambda), \quad \lambda \odot \mu_{i} \neq \overline{0}, \mu_{i} \in C\right\} \\
& =\left\{\phi(\lambda) \in L^{X} \mid \lambda \odot \phi(\lambda) \neq \overline{0}\right\} .
\end{aligned}
$$

By Theorem 2.6, others cases hold.

Theorem 4.2. Let \mathcal{U} be a covering (L, \odot)-uniformity on X. Then $\mathbb{U}_{\mathcal{U}}=\left\{\phi \in \Omega(X) \mid \exists C \in \mathcal{U}, \phi_{C} \leq \phi\right\}$ is a Hutton (L, \otimes)-uniformity on X where $\phi_{C}(\lambda)=\Delta(C)(\lambda)=s t(\lambda, C)$.

Proof. (U1) It is easy.
(U2) For each $\psi \in \mathbb{U}_{\mathcal{U}}$, there exists $C \in \mathcal{U}$ such that $\phi_{C} \leq \psi$. For $C \in \mathcal{U}$, there exists $C_{1} \in \mathcal{U}$ such that $s t\left(C_{1}\right) \leq C$. Since

$$
\begin{aligned}
\phi_{C_{1}} \circ \phi_{C_{1}}(\lambda) & =\phi_{C_{1}}\left(s t\left(\lambda, C_{1}\right)\right) \\
& =\operatorname{st}\left(s t\left(\lambda, C_{1}\right), C_{1}\right) \\
& \leq \operatorname{st}\left(\lambda, s t\left(C_{1}\right)\right) \quad(\text { by Theorem 3.5(7)) } \\
& \leq \operatorname{st}(\lambda, C)=\phi_{C}(\lambda),
\end{aligned}
$$

we have $\phi_{C_{1}} \circ \phi_{C_{1}} \leq \phi_{C} \leq \psi$.
(U3) For each $\psi_{i} \in \mathbb{U}_{\mathcal{U}}$ for $i=1,2$, there exist $C_{i} \in \mathcal{U}$ such that $\phi_{C_{i}} \leq \psi_{i}$. Since

$$
\begin{aligned}
\phi_{C_{1}} \otimes \phi_{C_{2}}(\lambda) & =\bigwedge\left\{\phi_{C_{1}}\left(\lambda_{1}\right) \odot \phi_{C_{2}}\left(\lambda_{2}\right) \mid \lambda=\lambda_{1} \odot \lambda_{2}\right\} \\
& =\bigwedge\left\{s t\left(\lambda_{1}, C_{1}\right) \odot \operatorname{st}\left(\lambda_{2}, C_{2}\right) \mid \lambda=\lambda_{1} \odot \lambda_{2}\right\} \\
& \geq \operatorname{st}\left(\lambda_{1} \odot \lambda_{2}, C_{1} \odot C_{2}\right)=\phi_{C_{1} \odot C_{2}}(\lambda),
\end{aligned}
$$

we have $\phi_{C_{1} \odot C_{2}} \leq \phi_{C_{1}} \otimes \phi_{C_{2}} \leq \psi_{1} \otimes \psi_{2}$. Hence $\psi_{1} \otimes \psi_{2} \in \mathbb{U}_{\mathcal{U}}$.
(U5) For each $\psi \in \mathbb{U}_{\mathcal{U}}$, there exists $C \in \mathcal{U}$ such that $\phi_{C} \leq \psi$. Since $\phi_{C}(\lambda) \odot \mu=s t(\lambda, C) \odot \mu \neq \overline{0}$ iff there exists $\rho \in C$ such that $\rho \odot \lambda \neq \overline{0}$ and $\rho \odot \mu \neq \overline{0}$ iff $\lambda \odot \phi_{C}(\mu) \neq \overline{0}$. Hence ϕ_{C} is symmetric.

In Theorem 4.1(3), we define:

$$
C_{\phi}= \begin{cases}\Sigma(\phi)-\{\overline{1}\} & \text { if } \bigvee \lambda_{i}=1, \forall \lambda_{i} \in \Sigma(\phi)-\{\overline{1}\} \\ \Sigma(\phi) & \text { otherwise }\end{cases}
$$

Theorem 4.3. Let \mathbb{U} be a $\operatorname{Hutton}(L, \otimes)$-uniformity on X satisfying the following condition
(C) for $\lambda, \mu \in C_{\phi}$ with $\lambda \odot \mu \neq \overline{0}$, we have $\lambda \leq \phi(\mu)$.

Then we have the following properties
(1) $\mathcal{U}_{\mathbb{U}}=\left\{C \in C(X) \mid C_{\phi} \leq C, \phi \in \mathbb{U}\right\}$ is a covering (L, \odot) uniformity on X.
(2) $\mathbb{U} \subset \mathbb{U}_{\mathcal{U}_{\mathbb{U}}}$ and $\mathcal{U}_{\mathbb{U}_{\mathcal{U}}}=\mathcal{U}$.

Proof. (1) (UC1) If $C_{1} \leq C_{2}$ and $C_{1} \in \mathcal{U}_{\mathbb{U}}$, then there exist $\phi \in \mathbb{U}$ such that $C_{\phi} \leq C_{1} \leq C_{2}$. So, $C_{2} \in \mathcal{U}_{\mathbb{U}}$.
(UC2) For each $C_{i} \in \mathcal{U}_{\mathbb{U}}$ for $i=1,2$, there exist $\phi_{i} \in \mathbb{U}$ such that $C_{\phi_{i}} \leq C_{i}$. For $\lambda \odot\left(\phi_{1} \otimes \phi_{2}\right)(\lambda) \neq \overline{0}$, since

$$
\left(\phi_{1} \otimes \phi_{2}\right)(\lambda)=\bigwedge\left\{\phi_{1}(\lambda) \odot \phi_{2}\left(\lambda_{2}\right) \mid \lambda=\lambda_{1} \odot \lambda_{2}\right\}
$$

$\lambda_{1} \odot \lambda_{2} \odot \phi_{1}\left(\lambda_{1}\right) \odot \phi_{2}\left(\lambda_{2}\right) \neq \overline{0}$ implies $\lambda_{1} \odot \phi_{1}\left(\lambda_{1}\right) \neq \overline{0}, \lambda_{2} \odot \phi_{2}\left(\lambda_{2}\right) \neq \overline{0}$, then $\left(\phi_{1} \otimes \phi_{2}\right)(\lambda) \leq \phi_{1}\left(\lambda_{1}\right) \odot \phi_{2}\left(\lambda_{2}\right)$. Hence $C_{\phi_{1} \otimes \phi_{2}} \leq C_{\phi_{1}} \odot C_{\phi_{2}} \leq$ $C_{1} \odot C_{2}$. Thus $C_{1} \odot C_{2} \in \mathcal{U}_{\mathbb{U}}$.
(UC3) We only show that $s t\left(C_{\phi_{1}}\right) \leq C_{\phi_{2}}$ such that $\phi_{1} \circ \phi_{1} \leq \phi_{2}$. For $\operatorname{st}\left(\phi_{1}(\lambda), C_{\phi_{1}}\right) \in \operatorname{st}\left(C_{\phi_{1}}\right)$, since

$$
\begin{aligned}
\operatorname{st}\left(\phi_{1}(\lambda), C_{\phi_{1}}\right) & =\bigvee\left\{\phi_{1}(\rho) \in C_{\phi_{1}} \mid \phi_{1}(\lambda) \odot \phi_{1}(\rho) \neq \overline{0}\right\} \\
& \leq \bigvee\left\{\phi_{1}(\rho) \in C_{\phi_{1}} \mid \phi_{1}(\rho) \leq \phi_{1}\left(\phi_{1}(\lambda)\right)\right\}(\text { by }(\mathrm{C})) \\
& \leq \phi_{1}\left(\phi_{1}(\lambda)\right) \leq \phi_{2}(\lambda), \\
\phi_{1}(\lambda) & \leq \operatorname{st}\left(\phi_{1}(\lambda), C_{\phi_{1}}\right) \leq \phi_{1}\left(\phi_{1}(\lambda)\right) \leq \phi_{2}(\lambda),
\end{aligned}
$$

and $\overline{0} \neq \lambda \odot \phi_{1}(\lambda) \leq \lambda \odot \phi_{2}(\lambda)$, then there exists $\phi_{2}(\lambda) \in C_{\phi_{2}}$ such that $\operatorname{st}\left(\phi_{1}(\lambda), C_{\phi_{1}}\right) \leq \phi_{2}(\lambda)$. Thus, the results hold.
(2) Since $\Sigma \circ \Delta \geq 1_{C(X)}$ and $\Delta \circ \Sigma \leq 1_{\Omega(X)}$, we have

$$
C \leq C_{\phi_{C}}, \quad \phi_{C_{\phi}} \leq \phi .
$$

It implies $\mathcal{U}_{\mathbb{U}_{\mathcal{U}}} \subset \mathcal{U}$ and $\mathbb{U} \subset \mathbb{U}_{\mathcal{U}_{U}}$.
For each $B \in \mathcal{U}$, there exists $C \in \mathcal{U}$ such that $\operatorname{st}(C) \leq B$. Let $\phi_{C}(\lambda) \in C_{\Phi_{C}}$ with $\phi_{C}(\lambda) \odot \lambda \neq \overline{0}$. Since $s t(C) \leq B$, there exists $\rho \in B$ such that $\phi_{C}(\lambda)=s t(\lambda, C) \leq \rho$. Hence $C_{\phi_{C}} \leq B$. So, $\mathcal{U} \subset \mathcal{U}_{\mathbb{U} u}$.

Example 4.4. Let $X=\{x, y, z\}$ be a set and $([0,1], \odot)$ a quantale defined by $x \odot y=0 \vee(x+y-1)$. Define $\phi \in \Omega(X)$ as

$$
\phi(\lambda)= \begin{cases}\overline{0} & \text { if } \lambda=\overline{0} \\ 1_{\{x, y\}}, & \text { if } \overline{0} \neq \lambda \leq 1_{\{x\}} \\ 1_{\{z\}}, & \text { if } \overline{0} \neq \lambda \leq 1_{\{z\}} \\ \overline{1} & \text { otherwise }\end{cases}
$$

Since $\phi \otimes \phi=\phi, \phi \circ \phi=\phi$ and ϕ is symmetric. Thus, $\mathbb{U}=\{\psi \in \Omega(X) \mid$ $\phi \leq \psi\}$ is a Hutton (L, \otimes)-uniformity on X. From Theorem 4.1, we obtain

$$
\begin{aligned}
\Sigma(\phi) & =\left\{1_{\{x, y\}}, 1_{\{z\}}, \overline{1}\right\} \\
C_{\phi} & =\left\{1_{\{x, y\}}, 1_{\{z\}}\right\} .
\end{aligned}
$$

Since $C_{\phi} \odot C_{\phi}=C_{\phi}$ and $s t\left(C_{\phi}\right)=C_{\phi}$, we obtain a covering (L, \odot) uniformity on X as follows

$$
\mathcal{U}_{\mathbb{U}}=\left\{C \in C(X) \mid C_{\phi} \leq C\right\}
$$

and a Hutton (L, \otimes)-uniformity $\mathbb{U}=\left\{\psi \in \Omega(X) \mid \phi_{C_{\phi}} \leq \psi\right\}$ where

$$
\phi_{C_{\phi}}(\lambda)= \begin{cases}\overline{0} & \text { if } \lambda=\overline{0} \\ 1_{\{x, y\}} & \text { if } \overline{0} \neq \lambda \leq 1_{\{x, y\}}, \\ 1_{\{z\}}, & \text { if } \overline{0} \neq \lambda \leq 1_{\{z\}}, \\ \overline{1} & \text { otherwise }\end{cases}
$$

Since $\phi_{C_{\phi}} \leq \phi$, we have $\mathbb{U} \subset \mathbb{U}_{\mathcal{U}_{\mathbb{U}}}$.

References

1. G. Artico, R. Moresco, Fuzzy proximities according with Lowen fuzzy uniformities, Fuzzy Sets and Systems 21 (1987), 85-98.
2. M. H. Burton, The relationship between a fuzzy uniformity and its family of α-level uniformities, Fuzzy Sets and Systems 54 (1993), 311-316.
3. J. Gutiérrez García, I. Mardones Pérez, M.H. Burton, The relationship between various filter notions on a GL-monoid, J. Math. Anal. Appl. 230 (1999), 291302.
4. J. Gutiérrez García, I. Mardones Pérez, J. Picado, M. A. de Prade Vicente, Uniform-type structures on lattice-valued spaces and frames, Fuzzy Sets and Systems (Article in press).
5. J. Gutiérrez García, M. A. de Prade Vicente, A.P. Šostak, A unified approach to the concept of fuzzy L-uniform spaces, Chapter 3 in [15], 81-114.
6. U. Höhle, Probabilistic uniformization of fuzzy uniformities, Fuzzy Sets and Systems 1 (1978 311-332).
7. U. Höhle, Probabilistic topologies induced by L-fuzzy uniformities, Manuscripta Math. 38 (1982), 289-323.
8. U. Höhle, E. P. Klement, Non-classical logic and their applications to fuzzy subsets, Kluwer Academic Publisher, Boston (1995).
9. U. Höhle, S. E. Rodabaugh, Mathematics of Fuzzy Sets, Logic, Topology and Measure Theory, The Handbooks of Fuzzy Sets Series, Volume 3, Kluwer Academic Publishers, Dordrecht (1999).
10. B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1977), 559-571.
11. Y.C. Kim, Y.S. Kim, Two types of uniform spaces, Int. J. Fuzzy Logic and Intelligent Systems 6(1) (2006), 77-84.
12. Y.C. Kim, Y.S. Kim, Topologies induced by two types uniformities, J. Fuzzy Logic and Intelligent Systems 16(2) (2006), 252-257.
13. Y.C. Kim, S.J. Lee, Categories of two types uniform spaces, Int. J. Fuzzy Logic and Intelligent Systems 6(3) (2006), 202-209.
14. W. Kotzé, Uniform spaces, Chapter 8 in [9], 553-580.
15. Liu Ying-Ming, Luo Mao-Kang, Fuzzy topology, World Scientific Publishing Co., Singapore (1997).
16. R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981), 370-385.
17. S. E. Rodabaugh, E. P. Klement, Topological And Algebraic Structures In Fuzzy Sets, The Handbook of Recent Developments in the Mathematics of Fuzzy Sets, Trends in Logic 20 , Kluwer Academic Publishers, (Boston/Dordrecht/London) (2003).
18. S. E. Rodabaugh, Axiomatic foundations for uniform operator quasi-uniformities, Chapter 7 in [17], 199-233.

Department of Mathematics
Natural Science,

Kangnung National University,
Gangneung, Gangwondo, 210-702, Korea
E-mail: yck@kangnung.ac.kr
Department of Mathematics
Natural Science,
Kangnung National University,
Gangneung, Gangwondo, 210-702, Korea
E-mail: jmko@kangnung.ac.kr

[^0]: Received April 11, 2008.
 2000 Mathematics Subject Classification: 54A40, 08A72, 06D72, 06A15.
 Key words and phrases: stsc-quantale, Hutton (L, \otimes)-uniform spaces, covering (L, \odot)-uniform spaces.

 * Corresponding author

