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COVERING (L,¯)-UNIFORMITIES
AND HUTTON (L,⊗)-UNIFORMITES

Y.C. Kim∗ and Jung Mi Ko

Abstract. In strictly two-sided, commutative quantale, we in-
troduce the notion of Hutton (L,⊗)-uniform spaces and covering
(L,¯)-uniform spaces and investigate the properties of them.

1. Introduction

Uniformities in fuzzy sets, have the entourage approach of Lowen
[16] and Höhle [6-7] based on powersets of the form LX×X , the uni-
form covering approach of Kotzé [14] and the uniform operator ap-
proach of Rodabaugh [18] as generalization of Hutton [10] based on
powersets of the form (LX)(L

X). For a fixed basis L, algebraic struc-
tures in L (cqm-lattices, quantales, MV-algebras) are extended for a
completely distributive lattice L or the unit interval or t-norms. Re-
cently, Gutiérrez Garćia et al.[5] introduced L-valued Hutton unifomity
on GL-monoid and Kim et al. [11-13] studied Hutton (L,⊗)-unifomity
and (L,¯)-uniformity in a sense of the entourage approach on stsc-
quantale.

In this paper, for a stsc-quantale (L,¯) as a somewhat different
aspect in [4,5], we introduce the notion of (L,¯)-covering uniformities
in a sense Garćia et al. [4-5] and Kotzé [14] based on coverings of
LX and Hutton (L,⊗)-uniformities as a view point of the approach
using uniform operators defined by Rodabaugh [18]. We investigate the
relationship between Hutton (L,⊗)-uniformities and covering (L,¯)-
covering uniformities.
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2. Preliminaries

Definition 2.1 [8,17]. A triple (L,≤,¯) is called a strictly two-
sided, commutative quantale (stsc-quantale, for short) iff it satisfies the
following properties:

(L1) L = (L,≤,∨,∧,>,⊥) is a completely distributive lattice where
> is the universal upper bound and ⊥ denotes the universal lower
bound;

(L2) (L,¯) is a commutative semigroup;
(L3) a = a¯>, for each a ∈ L;
(L4) ¯ is distributive over arbitrary joins, i.e.

(
∨

i∈Γ

ai)¯ b =
∨

i∈Γ

(ai ¯ b).

Definition 2.2. Let Ω(X) be a subset of (LX)(L
X) such that if it

satisfies, φ ∈ Ω(X),
(O1) φ(

∨
i∈Γ λi) =

∨
i∈Γ φ(λi), for {λi}i∈Γ ⊂ LX .

(O2) λ ≤ φ(λ) for all λ ∈ LX .

Theorem 2.3 [11-13]. For φ, φ1, φ2 ∈ Ω(X), we define, for all
λ, ρ ∈ LX ,

φ1 ◦ φ2(λ) = φ1(φ2(λ)),

φ1 ⊗ φ2(λ) =
∧
{φ1(λ1)¯ φ2(λ2) | λ = λ1 ¯ λ2}.

Then the following properties hold:
(1) φ←(ρ) =

∨{λ ∈ LX | φ(λ) ≤ ρ} such that φ← is a right adjoint
of φ with φ ◦ φ←(ρ) ≤ ρ and λ ≤ φ← ◦ φ(λ).

(2) φ1 ◦ φ2 ∈ Ω(X) and φ1 ⊗ φ2 ∈ Ω(X).
(3) φ1 ⊗ φ2 ≤ φ1 and φ1 ⊗ φ2 ≤ φ2.
(4) (φ1 ⊗ φ2)⊗ φ3 = φ1 ⊗ (φ2 ⊗ φ3).

Lemma 2.4 [11-13]. Let f : X → Y be a function. We define the
image and preimage operators

f⇒ : (LX)(L
X) → (LY )(L

Y ), f⇐ : (LY )(L
Y ) → (LX)(L

X)

such that for each ψ ∈ (LY )(L
Y ) for all µ, µ1, µ2 ∈ LX , ρ1, ρ2 ∈ LY ,

f⇒(φ)(ρ) = (f→ ◦ φ ◦ f←)(ρ) = f→(φ(f←(ρ)),
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f⇐(ψ)(µ) = (f← ◦ ψ ◦ f→)(µ) = f←(ψ(f→(µ))).

For each ψ, ψ1, ψ2 ∈ Ω(Y ) and φ1, φ2 ∈ Ω(X), we have the following
properties.

(1) The pair (f⇒, f⇐) is a Galois connection; i.e., f⇒ a f⇐.
(2) f→(µ1 ¯ µ2) ≤ f→(µ1) ¯ f→(µ2) with equality if f is injective

and f←(ρ1 ¯ ρ2) = f←(ρ1)¯ f←(ρ2).
(3) f⇐(ψ) ∈ Ω(X).
(4) If ψ1 ≤ ψ2, then f⇐(ψ1) ≤ f⇐(ψ2).
(5) f⇐(ψ1) ◦ f⇐(ψ2) ≤ f⇐(ψ1 ◦ ψ2) with equality if f is onto.
(6) f⇐(ψ1)⊗ f⇐(ψ2) = f⇐(ψ1 ⊗ ψ2).

Definition 2.5 [12]. A subset T of LX is called an (L,¯)-topology
on X if it satisfies the following conditions:

(T1) 1X , 1∅ ∈ T.
(T2) If λ1, λ2 ∈ T, then λ1 ∧ λ2 ∈ T.
(T3) If λi ∈ T for all i ∈ Γ, then (

∨
i∈Γ λi) ∈ T

(TO) If λ1, λ2 ∈ T, then λ1 ¯ λ2 ∈ T.
The pair (X,T) is called an (L,¯) -topological space.

Let (X,T1) and (Y,T2) be (L,¯) -topological spaces. A function
f : (X,T1) → (Y,T2) is L-continuous if f←(λ) ∈ T1, for every λ ∈ T2.

Theorem 2.6 [15,17]. Let (M,≤) and (N,≤) be a partially or-
dered set and φ : M → N join-preserving map,i.e; φ(

∨
xi) =

∨
φ(xi).

φ has a right adjoint ψ : N → M as follows

ψ(y) =
∨
{x ∈ M | φ(x) ≤ y}.

Moreover, φ(x) ≤ y iff x ≤ ψ(y). Equivalently, idM ≤ ψ ◦ φ and
φ ◦ ψ ≤ idN .

3. Covering (L,¯)-uniformities and Hutton (L,⊗)-uniformites

We define a somewhat different aspect of uniformities in [4], we intro-
duce the notion of (L,⊗)-uniformities as a view point of the approach
using uniform operators defined by Rodabaugh [18].

A function φ ∈ Ω(X) is called symmetric if it satisfies
(S) φ(λ)¯ µ 6= 0 iff λ¯ φ(µ) 6= 0, for each λ, µ ∈ LX .
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Definition 3.1. A nonempty subset U of Ω(X) is called a Hutton
(L,⊗)-uniformity on X if it satisfies the following conditions:

(U1) If φ ≤ ψ with φ ∈ U and ψ ∈ Ω(X), then ψ ∈ U.
(U2) For each φ ∈ U, there exists ψ ∈ U such that ψ ◦ ψ ≤ φ.
(U3) For each φ, ψ ∈ U, φ⊗ ψ ∈ U.
(U4) For each φ ∈ U, there exists a symmetric ψ ∈ U such that

ψ ≤ φ.
The pair (X,U) is called a Hutton (L,⊗)-uniform space. Let U1 and

U2 be Hutton (L,⊗)-uniformites on X. If U1 ⊂ U2, U2 is called finer
than U1.

Let (X,U1) and (Y,U2) be Hutton (L,⊗)-uniform spaces. A func-
tion f : (X,U1) → (Y,U2) is H-uniformly continuous if f⇐(ψ) ∈ U1,
for every ψ ∈ U2.

Theorem 3.2. Let U be a Hutton (L,⊗)-uniformity on X. We
define a subset TU of LX as follows:

TU = {ρ ∈ LX | ∃φ ∈ U, φ(ρ) = ρ}.

Then TU is an (L,¯)-topology on X induced by U.

Proof. (T1). Since φ(0) = 0 and φ(1) = 1 for all φ ∈ U, we have
0, 1 ∈ TU.

(T2) and (TO). Let λi ∈ TU for i = 1, 2. Then φi ∈ TU such that
φi(λi) = λi. Since 1¯ (λ1 ∧ λ2) = λ1 ∧ λ2, we have

(φ1 ⊗ φ2)(λ1 ∧ λ2) ≤ φ1(λ1 ∧ λ2) ∧ φ2(λ1 ∧ λ2)

≤ φ1(λ1) ∧ φ2(λ2) = λ1 ∧ λ2,

(φ1 ⊗ φ2)(λ1 ¯ λ2) ≤ φ1(λ1)¯ φ2(λ2) ≤ λ1 ¯ λ2.

So, λ1 ∧ λ2, λ1 ¯ λ2 ∈ TU.
(T3) Let λi ∈ TU for i ∈ Γ. Then, for each i ∈ Γ, there exists φi ∈ U

such that φi(λi) = λi.
Suppose that φ(

∨
i∈Γ λi) 6≤

∨
i∈Γ λi for all φ ∈ U. Since

φ(
∨

i∈Γ λi) =
∨

i∈Γ φ(λi), there exists {i1, i2, ...im} ⊂ Γ such that

φ(∨m
k=1λik

) 6≤
∨

i∈Γ

λi.
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Put φ = ⊗m
k=1φik

. Then

⊗m
k=1φik

(∨m
k=1λik

) = ∨m
k=1(⊗m

k=1φik
)(λik

) ≤ ∨m
k=1φik

(λik
)

≤ ∨m
k=1λik

≤
∨

i∈Γ

λi.

It is a contradiction. Hence there exists φ ∈ U such that φ(
∨

i∈Γ λi) =∨
i∈Γ λi. Hence

∨
i∈Γ λi ∈ TU. ¤

Example 3.3. Let X = {x, y, z} be a set and ([0, 1],¯) a quantale
defined by x¯ y = 0 ∨ (x + y − 1). Define φ ∈ Ω(X) as

φ(λ) =





0 if λ = 0,
1{x,y} if 0 6= λ ≤ 1{x,y},

1{z}, if 0 6= λ ≤ 1{z},

1 otherwise.

where 1{x,y} and 1{z} are characteristic functions. We have (φ⊗φ) = φ,
φ ◦ φ = φ and φ is symmetric. Thus, U = {ψ ∈ Ω(X) | φ ≤ ψ} is a
Hutton (L,⊗)-uniformity on X. From Theorem 3.2, we obtain an
(L,¯)-topology on X as follows:

TU = {0, 1, 1{x,y}, 1{z}}.

Theorem 3.4. Let (Y,U) be a Hutton (L,⊗)-uniform space, X a
set and f : X → Y a function. Define a subset f⇐(U) of Ω(X) as
follows:

f⇐(U) = {φ ∈ Ω(X) | ∃ψ ∈ U, f⇐(ψ) ≤ φ}.
Then we have the following properties.

(1) If ψ is symmetric, f⇐(ψ) is symmetric.
(2) The structure f⇐(U) is the coarsest Hutton (L,⊗)-uniformity

on X for which f is H-uniformly continuous.
(3) A map g : (Z,U1) → (X, f⇐(U)) is H-uniformly continuous iff

f ◦ g : (Z,U1) → (Y,U) is H-uniformly continuous.
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Proof. (1) For f⇐(ψ)(λ)¯ µ 6= 0, we have

0 6= f→
(
f⇐(ψ)(λ)¯ µ

)
≤ f→(f⇐(λ))¯ f→(µ)

≤ ψ(f→(λ))¯ f→(µ).

By the symmetric of ψ, f→(λ) ¯ ψ(f→(µ)) 6= 0, there exists x ∈ X
such that

f→(λ)(f(x))¯ ψ(f→(µ))(f(x)) 6= 0.

It implies λ(x)¯ f⇐(ψ)(µ)(x) 6= 0. Hence λ¯ f⇐(ψ)(µ) 6= 0. So, f⇐

is symmetric.
(2) First, we will show that f⇐(U) is a Hutton (L,⊗)-uniformity on

X.
(U1) Obvious.
(U2) For each φ ∈ f⇐(U), there exists ψ ∈ U with f⇐(ψ) ≤ φ. For

ψ ∈ U, since (Y,U) is a Hutton (L,⊗)-uniform space, by (U2), there
exists γ ∈ U with γ ◦ γ ≤ ψ. By Lemma 2.4(5), since

f⇐(γ) ◦ f⇐(γ) ≤ f⇐(γ ◦ γ) ≤ f⇐(ψ) ≤ φ,

then f⇐(γ) ∈ f⇐(U).
(U3) If φi ∈ f⇐(U), for i = 1, 2, there exists ψi ∈ U with f⇐(ψi) ≤

φi. Since f⇐(ψ1) ⊗ f⇐(ψ2) = f⇐(ψ1 ⊗ ψ2) ≤ φ1 ⊗ φ2 from Lemma
2.4(6), we have φ1 ⊗ φ2 ∈ f⇐(U).

(U4) By (1), it is easily proved.
Second, by definition of f⇐(U), f⇐(ψ) ∈ f⇐(U), for all ψ ∈ U.

Hence f : (X, f⇐(U)) → (Y,U) is H-uniformly continuous.
Finally, let f : (X,U1) → (Y,U) be H-uniformly continuous. For

each φ ∈ f⇐(U), there exists ψ ∈ U with f⇐(ψ) ≤ φ. Since f⇐(ψ) ∈
U1, then φ ∈ U1. Hence f⇐(U) ⊂ U1.

(3) Necessity of the composition condition is clear since the compo-
sition of H-uniformly continuous maps is H-uniformly continuous.

If φ ∈ f⇐(U), there exists ψ ∈ U such that f⇐(ψ) ≤ φ. Since f ◦ g
is H-uniformly continuous, for ψ ∈ U,

(f ◦ g)⇐(ψ) = g⇐ ◦ f⇐(ψ) ∈ U1.

Since g⇐(φ) ≥ g⇐ ◦ f⇐(ψ) ∈ U1, we have g⇐(φ) ∈ U1. ¤
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¤

A subset C of LX is a cover of X if
∨{λ | λ ∈ C} = 1X . For any

cover C1, C2, we denote C1 ≤ C2 if each λ ∈ C1, there exists µ ∈ C2

such that λ ≤ µ. We denote C(X) as the collections of all covering of
X.

Theorem 3.5. Let f : X → Y be a function. For C, C1, C2 ⊂ LX

and λ, µ ∈ LX , we define

st(λ,C) =
∨
{µ ∈ C | µ¯ λ 6= ∅},

st(C) = {st(λ, C) | λ ∈ C},
C1 ¯ C2 = {λ1 ¯ λ2 | λi ∈ Ci, i = 1, 2}.

Then we have the following properties:
(1) If C is a cover, then λ ≤ st(λ,C) and C ≤ st(C).
(2) If C1 and C2 are covers, then C1 ¯ C2 and C1 ∧ C2 are covers.
(3) If λ ≤ µ, then st(λ,C) ≤ st(µ, C).
(4) If C1 ≤ C2, then st(λ,C1) ≤ st(λ,C2).
(5) st(λ¯ µ, C1 ¯ C2) ≤ st(λ,C1)¯ st(µ,C2).
(6) st(

∨
λi, C) =

∨
st(λi, C).

(7) st(st(λ,C), C) ≤ st(λ, st(C)).
(8) f→(st(λ,C)) ≤ st(f→(λ), f→(C)).
(9) f→(st(C)) ≤ st(f→(C)).
(10) st(f←(λ), f←(C))) ≤ f←(st(λ,C)).
(11) st(f←(C)) ≤ f←(st(C)).

Proof. (5) Suppose st(λ ¯ µ,C1 ¯ C2) 6≤ st(λ,C1) ¯ st(µ,C2). By
the definition of st(λ ¯ µ,C1 ¯ C2), there exist ρi ∈ Ci for i = 1, 2,
with (ρ1 ¯ ρ2)¯ (λ¯ µ) 6= 0 such that

ρ1 ¯ ρ2 6≤ st(λ,C1)¯ st(µ,C2)

Since (ρ1 ¯ ρ2) ¯ (λ ¯ µ) 6= 0 implies ρ1 ¯ λ 6= 0 and ρ2 ¯ µ 6= 0,
we have st(λ,C1) ¯ st(µ,C2) ≥ ρ1 ¯ ρ2. It is a contradiction. Hence
st(λ¯ µ,C1 ¯ C2) ≤ st(λ,C1)¯ st(µ,C2).
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(8) Since λ ¯ ρ 6= 0 implies f→(λ) ¯ f→(ρ) ≥ f→(λ ¯ ρ) 6= 0, we
have

f→(st(λ,C)) = f→(
∨
{ρ | ρ¯ λ 6= 0, ρ ∈ C})

=
∨
{f→(ρ) | ρ¯ λ 6= 0, ρ ∈ C}

≤
∨
{f→(ρ) | f→(ρ)¯ f→(λ) 6= 0, ρ ∈ C}

= st(f→(λ), f→(C)).

Other cases follow from Proposition 3.2 in [4].
¤

Example 3.6. Let X = {x, y, z} be a set and ([0, 1],¯) a stsc-
quantale defined by a¯ b = 0∨ (a + b− 1). Let C = {ρi ∈ [0, 1]X | i =
1, 2, 3} be a cover where

ρ1(x) = 0.3, ρ1(y) = 1, ρ1(z) = 0, ρ2(x) = 1, ρ2(y) = 0.2, ρ2(z) = 0,

ρ3(x) = 0, ρ3(y) = 0, ρ3(z) = 1.

We obtain

C ¯ C = {ρ1 ¯ ρ1 = 1{y}, ρ2 ¯ ρ2 = 1{x}, ρ1 ¯ ρ2, ρ3},

1{x,y} = st(ρ1 ¯ ρ2, C ¯ C) ≤ st(ρ1, C)¯ st(ρ2, C)
= 1{x,y} ¯ 1{x,y} = 1{x,y}.

Since st(ρ1, C) = st(ρ2, C) = 1{x,y}, st(ρ3, C) = 1{z}, we obtain

st(C) = {1{x,y}, 1{z}}, C ≤ st(C).¤

Definition 3.7. A nonempty family U of L-covers of X is called a
covering (L,¯)-uniformity on X if it satisfies the following conditions:

(UC1) If C1 ≤ C2 and C1 ∈ U , then C2 ∈ U .
(UC2) For each C1, C2 ∈ U , C1 ¯ C2 ∈ U .
(UC3) For each C1 ∈ U , there exists C2 ∈ U such that st(C2) ≤ C1.
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The pair (X,U) is said to be a covering (L,¯)-uniform space.
Let U1 and U2 be covering (L,¯)-uniformites on X. If U1 ⊂ U2, U2

is called finer than U1.
The pair (X,B) is said to be a covering (L,¯)-uniform base if it

satisfies (UC2) and (UC3).
Let (X,U1) and (Y,U2) be covering (L,¯)-uniform spaces. A func-

tion f : (X,U1) → (Y,U2) is C-uniformly continuous if f←(C) ∈ U1,
for every C ∈ U2.

Theorem 3.8. Let (X,U) be a covering (L,¯)-uniform space. We
define IU : LX → LX as follows:

IU (λ) =
∨
{ρ ∈ LX | st(ρ,C) ≤ λ, ∃C ∈ U}.

st(C) = {st(λ, C) | λ ∈ C}.
Then we have the following properties:
(1) IU (1) = 1.
(2) IU (λ) ≤ λ.
(3) IU (IU (λ)) = IU (λ).
(4) IU (λ ∧ µ) ≥ IU (λ) ∧ IU (µ).
(5) IU (λ¯ µ) ≥ IU (λ)¯ IU (µ).

Proof. (5) Suppose IU (λ ¯ µ) 6≥ IU (λ) ¯ IU (µ). By the definition
of IU (λ) and IU (µ), there exist ρi ∈ Ci and Ci ∈ U for i = 1, 2 with
st(ρ1, C1) ≤ λ and st(ρ2, C2) ≤ µ such that

IU (λ¯ µ) 6≥ ρ1 ¯ ρ2

Since

st(ρ1 ¯ ρ2, C1 ¯ C2) ≤ st(ρ1, C1)¯ st(ρ1, C2) ≤ λ¯ µ,

we have IU (λ¯ µ) 6≥ ρ1 ¯ ρ2. It is a contradiction. Hence IU (λ¯ µ) ≥
IU (λ)¯ IU (µ).

Other cases follows from Proposition 3.4 in [4]. ¤
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Theorem 3.9. Let U be a covering (L,¯)-uniformity on X. Then
the following properties hold:

(1) We define a subset TU of LX as follows:

TU = {ρ ∈ LX | ∃C ∈ U , st(ρ,C) = ρ}.

Then TU is an (L,¯)-topology on X induced by U .
(2) We define a subset TIU of LX as follows:

TIU = {ρ ∈ LX | IU (ρ) ≥ ρ}.

Then TIU is an (L,¯)-topology on X induced by IU .
(3) TIU = TU .

Proof. (1) (T1) Since st(0, C) = 0 and st(1, C) = 1 for all C ∈ U ,
we have 0, 1 ∈ TU .

(T2) and (TO). Let λi ∈ TU for i = 1, 2. Then Ci ∈ U such that
st(λi, Ci) = λi. Since

st(λ1 ∧ λ2, C1 ∧ C2) ≤ st(λ1, C1) ∧ st(λ2, C2) = λ1 ∧ λ2,

st(λ1 ¯ λ2, C1 ¯ C2) ≤ st(λ1, C1)¯ st(λ2, C2) = λ1 ¯ λ2

we have λ1 ∧ λ2, λ1 ¯ λ2 ∈ TU .
(T3) Let λi ∈ TU for i ∈ Γ. Then, for each i ∈ Γ, there exists Ci ∈ U

such that st(λi, Ci) = λi.
Suppose that st(

∨
i∈Γ λi, C) 6≤ ∨

i∈Γ λi for all C ∈ U . Since
st(

∨
λi, C) =

∨
st(λi, C), there exists {i1, i2, ...im} ⊂ Γ such that

st(∨m
k=1λik

, C) 6≤
∨

i∈Γ

λi

Put C = ¯m
k=1Cik

. Then

st(∨m
k=1λik

,¯m
k=1Cik

) = ∨m
k=1st(λik

,¯m
k=1Cik

)

≤ ∨m
k=1st(λik

, Cik
)

= ∨m
k=1λik

≤
∨

i∈Γ

λi.
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It is a contradiction. Thus, there exists C ∈ U such that
st(

∨
i∈Γ λi, C) =

∨
i∈Γ λi. Hence

∨
i∈Γ λi ∈ TU .

(2) (T1) Since IU (1) = 1 and IU (0) = 0, then 0, 1 ∈ TIU .
(T2) If λi ∈ TIU for each i = 1, 2, by Theorem 3.8 (4-5), λ1∧λ2, λ1¯

λ2 ∈ TIU .
(T3) Let λi ∈ TIU for i ∈ Γ. Since

IU (
∨

i∈Γ

λi) ≥
∨

i∈Γ

IU (λi) ≥
∨

i∈Γ

λi

we have
∨

i∈Γ λi ∈ TIU .
(3) Let ρ ∈ TU . Then C ∈ U with st(ρ,C) = ρ. So, IU (ρ) = ρ.

Hence ρ ∈ TIU .
Let λ ∈ TIU . Then IU (λ) ≥ λ. For all st(ρi, Ci) ≤ λ,

∨
i∈Γ ρi = λ.

Hence
∨

i∈Γ ρi =
∨

i∈Γ st(ρi, Ci) = λ. By a similar proof as in (1), there
exists C ∈ U such that st(

∨
i∈Γ ρi, C) =

∨
i∈Γ ρi = λ. So, λ ∈ TU .

¤

Theorem 3.10. Let (Y,B) be a covering (L,¯)-uniform base, X
a set and f : X → Y a function. Define a subset f←(B) of C(X) as
follows:

f←(B) = {f←(C) | C ∈ B}.
Then we have the following properties.
(1) The structure f⇐(B) is a covering (L,¯)-uniform base on X.
(2) The structure [f⇐(B)] = {C ∈ C(X) | f⇐(B) ≤ C, B ∈ B}

is the coarsest covering (L,¯)-uniform base on X for which f is C-
uniformly continuous.

(3) A map g : (Z,U1) → (X, [f⇐(U)] is C-uniformly continuous iff
f ◦ g : (Z,U1) → (Y,U) is C-uniformly continuous.

Proof. (1) (UC2) It follows from f←(C1¯C2) = f←(C1)¯f←(C2).
(UC3) For each f←(C) ∈ f←(B) with C ∈ B, there exists C1 ∈ B

such that st(C1) ≤ C. Since st(f←(C1)) ≤ f←(st(C1)) ≤ f←(C),
f←(B) is a covering (L,¯)-uniform base on X.

(2) and (3) are similarly proved as in Theorem 3.4. ¤
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Example 3.11. Let Z = {a, b, c, d} and X = {x, y, z} be a set
and ([0, 1],¯) a stsc-quantale defined by a ¯ b = 0 ∨ (a + b − 1). Let
f : Z → X be a function as f(a) = x, f(b) = y, f(c) = f(d) = z.
Let U = {C ∈ C(X) | C1 = {1{x,y}, 1{z}} ≤ C} be a covering (L,¯)-
uniformity on X. Then f←(U) = {f←(C) ∈ C(Z) | C ∈ U} is not a
covering (L,¯)-uniformity on X because, for ρ(a) = ρ1(b) = 1, ρ(c) =
0.3, ρ(d) = 0,

f→(1{x,y}) ≤ ρ, ρ 6∈ f←(B).

4. Covering (L,¯) uniformities and Hutton (L,⊗)-uniformites

Theorem 4.1. We define a mapping ∆ : C(X) → Ω(X) as follows:

∆(C)(λ) = st(λ,C) =
∨
{µ ∈ C | µ¯ λ 6= ∅}.

Then we have the following properties:
(1) For each C ∈ C(X), ∆(C) ∈ Ω(X).
(2) ∆(C) has a right adjoint mapping ∆(C)← defined by

∆(C)←(λ) =
∨
{ρ ∈ LX | st(ρ,C) ≤ λ}.

It follows ∆(C)← ◦∆(C) ≥ 1LX and ∆(C) ◦∆(C)← ≤ 1LX . Further-
more, ∆(C)(λ) ≤ ρ iff λ ≤ ∆(C)←(ρ).

(3) ∆ has a right adjoint mapping Σ : Ω(X) → C(X) as follows:

Σ(φ) = {φ(λ) | λ¯ φ(λ) 6= ∅}.

It implies Σ ◦∆ ≥ 1C(X) and ∆ ◦ Σ ≤ 1Ω(X).

Proof. (1) It follows from: ∆(C)(
∨

λi) = st(
∨

λi, C) =
∨

st(λi, C) =∨
∆(C)(λi) and ∆(C)(λ) = st(λ,C) ≥ λ.
(2) By (1) and Theorem 2.6, ∆(C) has a right adjoint mapping

∆(C)→ as follows:

∆(C)←(λ) =
∨
{ρ ∈ LX | st(ρ,C) ≤ λ}.

By Theorem 2.6, the results hold.
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(6) Since ∆(
∨

Ci)(λ) = st(λ,
∨

Ci) =
∨

st(λ,Ci) =
∨

∆(Ci)(λ),
we have ∆(

∨
Ci) =

∨
∆(Ci). By Theorem 2.6, ∆ has a right adjoint

mapping Σ as follows:

Σ(φ) =
∨
{C ∈ C(X) | ∆(C) ≤ φ}

=
∨
{C ∈ C(X) | ∆(C)(λ) ≤ φ(λ)}

=
∨
{C ∈ C(X) | st(λ,C) ≤ φ(λ)}

=
∨
{C ∈ C(X) |

∨

i

µi ≤ φ(λ), λ¯ µi 6= 0, µi ∈ C}

= {φ(λ) ∈ LX | λ¯ φ(λ) 6= 0}.

By Theorem 2.6, others cases hold.
¤

Theorem 4.2. Let U be a covering (L,¯)-uniformity on X. Then
UU = {φ ∈ Ω(X) | ∃C ∈ U , φC ≤ φ} is a Hutton (L,⊗)-uniformity on
X where φC(λ) = ∆(C)(λ) = st(λ,C).

Proof. (U1) It is easy.
(U2) For each ψ ∈ UU , there exists C ∈ U such that φC ≤ ψ. For

C ∈ U , there exists C1 ∈ U such that st(C1) ≤ C. Since

φC1 ◦ φC1(λ) = φC1(st(λ,C1))

= st(st(λ,C1), C1)

≤ st(λ, st(C1)) (by Theorem 3.5(7))

≤ st(λ,C) = φC(λ),

we have φC1 ◦ φC1 ≤ φC ≤ ψ.
(U3) For each ψi ∈ UU for i = 1, 2, there exist Ci ∈ U such that

φCi ≤ ψi. Since

φC1 ⊗ φC2(λ) =
∧
{φC1(λ1)¯ φC2(λ2) | λ = λ1 ¯ λ2}

=
∧
{st(λ1, C1)¯ st(λ2, C2) | λ = λ1 ¯ λ2}

≥ st(λ1 ¯ λ2, C1 ¯ C2) = φC1¯C2(λ),
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we have φC1¯C2 ≤ φC1 ⊗ φC2 ≤ ψ1 ⊗ ψ2. Hence ψ1 ⊗ ψ2 ∈ UU .
(U5) For each ψ ∈ UU , there exists C ∈ U such that φC ≤ ψ. Since

φC(λ)¯µ = st(λ,C)¯µ 6= 0 iff there exists ρ ∈ C such that ρ¯λ 6= 0
and ρ¯ µ 6= 0 iff λ¯ φC(µ) 6= 0. Hence φC is symmetric.

¤

In Theorem 4.1(3), we define:

Cφ =
{

Σ(φ)− {1} if
∨

λi = 1, ∀λi ∈ Σ(φ)− {1},
Σ(φ) otherwise.

Theorem 4.3. Let U be a Hutton (L,⊗)-uniformity on X satisfying
the following condition

(C) for λ, µ ∈ Cφ with λ¯ µ 6= 0, we have λ ≤ φ(µ).
Then we have the following properties
(1) UU = {C ∈ C(X) | Cφ ≤ C, φ ∈ U} is a covering (L,¯)-

uniformity on X.
(2) U ⊂ UUU and UUU = U .

Proof. (1) (UC1) If C1 ≤ C2 and C1 ∈ UU, then there exist φ ∈ U
such that Cφ ≤ C1 ≤ C2. So, C2 ∈ UU.

(UC2) For each Ci ∈ UU for i = 1, 2, there exist φi ∈ U such that
Cφi ≤ Ci. For λ¯ (φ1 ⊗ φ2)(λ) 6= 0, since

(φ1 ⊗ φ2)(λ) =
∧
{φ1(λ)¯ φ2(λ2) | λ = λ1 ¯ λ2},

λ1¯λ2¯φ1(λ1)¯φ2(λ2) 6= 0 implies λ1¯φ1(λ1) 6= 0, λ2¯φ2(λ2) 6= 0,

then (φ1 ⊗ φ2)(λ) ≤ φ1(λ1) ¯ φ2(λ2). Hence Cφ1⊗φ2 ≤ Cφ1 ¯ Cφ2 ≤
C1 ¯ C2. Thus C1 ¯ C2 ∈ UU.

(UC3) We only show that st(Cφ1) ≤ Cφ2 such that φ1 ◦ φ1 ≤ φ2.
For st(φ1(λ), Cφ1) ∈ st(Cφ1), since

st(φ1(λ), Cφ1) =
∨
{φ1(ρ) ∈ Cφ1 | φ1(λ)¯ φ1(ρ) 6= 0}

≤
∨
{φ1(ρ) ∈ Cφ1 | φ1(ρ) ≤ φ1(φ1(λ))} (by (C))

≤ φ1(φ1(λ)) ≤ φ2(λ),

φ1(λ) ≤ st(φ1(λ), Cφ1) ≤ φ1(φ1(λ)) ≤ φ2(λ),
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and 0 6= λ ¯ φ1(λ) ≤ λ ¯ φ2(λ), then there exists φ2(λ) ∈ Cφ2 such
that st(φ1(λ), Cφ1) ≤ φ2(λ). Thus, the results hold.

(2) Since Σ ◦∆ ≥ 1C(X) and ∆ ◦ Σ ≤ 1Ω(X), we have

C ≤ CφC
, φCφ

≤ φ.

It implies UUU ⊂ U and U ⊂ UUU .
For each B ∈ U , there exists C ∈ U such that st(C) ≤ B. Let

φC(λ) ∈ CΦC with φC(λ)¯λ 6= 0. Since st(C) ≤ B, there exists ρ ∈ B
such that φC(λ) = st(λ,C) ≤ ρ. Hence CφC ≤ B. So, U ⊂ UUU .

¤

Example 4.4. Let X = {x, y, z} be a set and ([0, 1],¯) a quantale
defined by x¯ y = 0 ∨ (x + y − 1). Define φ ∈ Ω(X) as

φ(λ) =





0 if λ = 0,
1{x,y} if 0 6= λ ≤ 1{x},

1{z}, if 0 6= λ ≤ 1{z},

1 otherwise.

Since φ⊗φ = φ, φ◦φ = φ and φ is symmetric. Thus, U = {ψ ∈ Ω(X) |
φ ≤ ψ} is a Hutton (L,⊗)-uniformity on X. From Theorem 4.1, we
obtain

Σ(φ) = {1{x,y}, 1{z}, 1},
Cφ = {1{x,y}, 1{z}}.

Since Cφ ¯ Cφ = Cφ and st(Cφ) = Cφ, we obtain a covering (L,¯)-
uniformity on X as follows

UU = {C ∈ C(X) | Cφ ≤ C},
and a Hutton (L,⊗)-uniformity U = {ψ ∈ Ω(X) | φCφ

≤ ψ} where

φCφ
(λ) =





0 if λ = 0,
1{x,y} if 0 6= λ ≤ 1{x,y},

1{z}, if 0 6= λ ≤ 1{z},

1 otherwise.

Since φCφ
≤ φ, we have U ⊂ UUU .
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