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ON STOCHASTIC OPTIMAL REINSURANCE AND

INVESTMENT STRATEGIES FOR THE SURPLUS

Jai Heui Kim∗ and Eun Sun Lee

Abstract. When we consider a life insurance company that sells
a large number of continuous T -year term life insurance policies,
it is important to find an optimal strategy which maximizes the
surplus of the insurance company at time T . The purpose of this
paper is to give an explicit expression for the optimal reinsurance
and investment strategy which maximizes the expected exponential
utility of the final value of the surplus at the end of T -th year. To do
this we solve the corresponding Hamilton-Jacobi-Bellman equation.

1. Introduction

By the surplus we mean the excess of some initial fund plus premi-
ums collected over claims paid. The insurance company’s risk will be
reduced through reinsurance, while in addition the company invests its
surplus in a financial market. Assume that a life insurance company
writes continuous T -year term life insurance policies for a large number
of policyholders, which are defined on the interval [0, T ] and provide a
payment at the moment of death if the death occurs in [0, T ]. Two of
fundamental aims that the insurance company pursues are to minimize
the ruin probability of the company and to maximize the expected utility
of the final surplus at the end of the T -th year.

In this paper we assume that, in the case of no reinsurance and no
investment, the surplus process (F (t))t∈[0,T ] is described by the following
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diffusion form:

(1.1)

{
dF (t) = µdt + σ0dB0(t)

F (0) = F,

where the second term of the right hand side is the stochastic inte-
gral w.r.t. a 1-dimensional standard Brownian motion (B0(t))t≥0. The
constant F > 0 is the initial surplus, while the constants µ > 0 and
σ0 > 0 are the exogenous parameters. This type of model for surplus
was treated by Hipp and Plum [3], Hφjgaad and Taksar [4], Luo, Taksar
and Tsoi [5] and Schmidli [7]. Two major types of mathematical models
for the surplus are the classical Cramer-Lundberg model and a linear
diffusion process described by (1.1). It is known that the latter is given
by a diffusion approximation for the former defined by

F (t) = F + pt−
N(t)∑

k=1

Xk

where p > 0, F ≥ 0, and (N(t))t≥0 is a Poisson process of the incoming
claims and X1, X2, · · · are i.i.d. random variables representing the size
of the successive claims (see [5] or [9]). The surplus described by (1.1)
may be used when an insurance company deals with a large number
of policyholders where an individual claim is relatively small compared
with the size of the surplus.

The proportional reinsurance level at time t ∈ [0, T ] will be associated
with the value 1 − u(t), where 0 ≤ u(t) ≤ 1 is called the risk exposure.
If the cedent choose the risk exposure u(t), then the cedent have to pay
100u(t)% of each claim while the rest 100(1 − u(t))% of the claim will
be paid by the reinsurer. To purchase this reinsurance, the cedent pays
part of the premiums to the reinsurer at the rate of (1 − u(t))λ where
λ ≥ µ. Then the corresponding surplus process (F (t))t∈[0,T ] is given by

(1.2)

{
dF (t) = {µ− (1− u(t))λ}dt + u(t)σ0dB0(t)

F (0) = F.

The constants µ and λ can be regarded as the safety loading of the
cedent and reinsurer, respectively.

In addition, we assume that all of the surplus is invested in a financial
market which consists of two stocks, named XI and XII , whose prices
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are given by the following linear stochastic differential equations:

(1.3)

{
dXi(t) = aiXi(t)dt + σiXi(t)dBi(t)

Xi(0) = xi, i = 1, 2

where ai and σi, i = 1, 2, are the constants satisfying a1 ≤ a2 and
σ1 < σ2, and (Bi(t))t≥0, i = 1, 2, are independent standard Brownian
motions independent of (B0(t))t≥0. We can say that the stock XII is
more risky stock than the stock XI . We denote by v(t) the proportion
invested in more risky stock XII at time t ∈ [0, T ]. We disallow leverage
and short-sales, which restrict v(t) to be in 0 and 1, i.e. 0 ≤ v(t) ≤ 1.
Therefore, at any time 0 ≤ t < T , a nominal amount F (t)(1 − v(t))
is allocated to the stock XI . We treat the risk exposure u(t) and the
proportion v(t) of the surplus at time t being invested in more risky
stock XII as control parameters. Then the surplus process (F (t))t∈[0,T ]

is given by the following linear stochastic differential equations:

(1.4)





dF (t) = {F (t)[v(t)a2 + (1− v(t))a1] + µ− (1− u(t))λ}dt

+ u(t)σ0dB0(t) + F (t)σ1(1− v(t))dB1(t)

+ F (t)σ2v(t)dB2(t)

F (0) = F.

Given a strategy (u(·), v(·)), the solution (F u,v(t))t∈[0,T ] is called the
surplus process corresponding to (u(·), v(·)). In the case that v(t) ≡ 1 in
(1.4), i.e., all of the surplus is invested in the stock XII only, Taksar and
Markussen [8] gave an explicit expression for the optimal reinsurance
policy which minimizes the ruin probability of cedent. And Luo, Taksar
and Tsoi [5] extended results in [8] to the case that σ1 = 0 in (1.4), i.e.,
XI is a riskless asset. In the case that σ1 = 0 and u(t) ≡ 0 in (1.4), i.e.,
there is no reinsurance, Devolder et al. [2] found an explicit expression
for the optimal asset allocation which maximizes the expected utility of
the final annuity fund at retirement and at the end of the period after
retirement.

In this paper we find an explicit expression for the optimal strategy
(u∗(·), v∗(·)) which maximizes the expected exponential utility of the
final value of the surplus process given by the stochastic differential
equation (1.4). To do this we solve the corresponding Hamilton-Jacobi-
Bellman (HJB) equation.
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The structure of the paper is as follows. In Section 2 we formulate our
problem and give main results. All proofs are based on stochastic opti-
mal control theory (see Björk [1] or Øksendal [6]). They are presented
in Section 3.

2. Formulation of the problem and main results

In this section we formulate our problem and give main results. Let
(Ω,F , P ) be a complete probability space with a filtration {Ft}t≥0 on
which three independent {Ft}t≥0-adapted standard Brownian motions
(Bi(t))t≥0, i = 0, 1, 2, are defined. A control (u(·), v(·)) is said to be
admissible if u(·) and v(·) are {Ft}t≥0-adapted processes satisfying 0 ≤
u(t), v(t) ≤ 1 for all t ∈ [0, T ]. The set of all admissible controls is
denoted by A.

We use an exponential utility function of the form:

(2.1) U(x) = −1

c
e−cx, c > 0.

Since U ′(x) > 0 and U ′′(x) < 0 for all x ∈ [0,∞), U(x) may serve as the
utility function of a risk-averse individual. Put

(2.2) Ju,v(t, x) = E[U(F u,v(T )) | F u,v(t) = x], (t, x) ∈ [0, T ]× R1,

where E[X|A] is the conditional expectation of a random variable X
given an event A. Our optimal control problem is to find the optimal
value function

(2.3) W (t, x) = sup
(u,v)∈A

Ju,v(t, x)

and the optimal strategy (u∗(·), v∗(·)) such that

(2.4) Ju∗,v∗(t, x) = W (t, x).

More we will give an explicit expression of (u∗(t), v∗(t)). The following
two theorems are essential to solve our problem. The proofs are standard
and can be found in Chapter 14 of [1] or Chapter 11 of [6].

Theorem 2.1.(HJB equation) Assume that W (t, x) defined by
(2.3) is twice continuously differentiable on (0,∞), i.e., ∈ C1,2. Then
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W (t, x) satisfies the following HJB equation:

(2.5)





sup
(u,v)∈A

Lu,vW (t, x) = 0

W (T, x) = U(x)

for all (t, x) ∈ [0, T )×R1, where Lu,v is the infinitesimal generator cor-
responding to the diffusion process defined by the stochastic differential
equation (1.4), i.e.,

Lu,v =
∂

∂t
+ {x[v(t)a2 + (1− v(t))a1] + µ− (1− u(t))λ} ∂

∂x

+

{
1

2
u(t)2σ2

0 +
1

2
x2

[
(1− v(t))2σ2

1 + v(t)2σ2
2

]} ∂2

∂x2

=
∂

∂t
+ {x[a1 + (a2 − a1)v(t)] + µ− (1− u(t))λ} ∂

∂x

+

{
1

2
u(t)2σ2

0 +
1

2
x2

[
σ2

1 − 2σ2
1v(t) + (σ2

1 + σ2
2)v(t)2

]} ∂2

∂x2
.

(2.6)

Theorem 2.2.(Verification theorem) Let H(t, x) ∈ C1,2 be a so-
lution of the HJB equation (2.5). Then the value function W (t, x) to the
control problem (2.3) is given by

W (t, x) = H(t, x).

Moreover if for some control (ū(·), v̄(·))
Lū,v̄H(t, x) = 0

for all (t, x) ∈ [0, T )× R1, then it holds

H(t, x) = J ū,v̄(t, x).

In this case (ū(t), v̄(t)) = (u∗(t), v∗(t)) and J ū,v̄(t, x) = Ju∗,v∗(t, x).

The following theorem is our main result.

Theorem 2.3. The optimal value function W (t, x) defined by (2.3)
and the optimal strategy (u∗(t), v∗(t)) are given by

(2.7) W (t, x) = −1

c
exp{−c[J(t) + H(t)(x−K(t))]},
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(2.8) u∗(t) =

(
λ

cσ2
0

)
eA(t−T )

and

(2.9) v∗(t) =

(
1

cx

)(
a2 − a1

σ2
1 + σ2

2

)
eA(t−T ) +

σ2
1

σ2
1 + σ2

2

,

where

J(t) = −
(

(a2 − a1)
2

2c(σ2
1 + σ2

2)
+

λ2

σ2
0

)
(t− T ),

H(t) = e−A(t−T ),

K(t) = − B

2A

(
1− e−A(t−T )

)− µ− λ

A

(
1− eA(t−T )

)
.

Here A and B are constants defined by

A = a1 +
(a2 − a1)σ

2
1

σ2
1 + σ2

2

, B =
cx2σ2

1

2

(
1− σ2

1

σ2
1 + σ2

2

)
.

3. Proofs

In this section we prove Theorem 2.3. By Theorem 2.1, the opti-
mal value function W (t, x) defined by (2.3) satisfies the following HJB
equation 




sup
(u,v)∈A

Lu,vW (t, x) = 0

W (T, x) = U(x)

for all (t, x) ∈ [0, T )× R1. Define

η(u, v) = Lu,vW

=
∂W

∂t
+ {x[a1 + (a2 − a1)v(t)] + µ− (1− u(t))λ} ∂W

∂x

+

{
1

2
u(t)2σ2

0 +
1

2
x2

[
σ2

1 − 2σ2
1v(t) + (σ2

1 + σ2
2)v(t)2

]} ∂2W

∂x2
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for any control (u(·), v(·)) ∈ A, and assume that (ū(·), v̄(·)) ∈ A satisfies

η(ū, v̄) = 0(3.1)

∂η

∂u
(ū, v̄) = 0(3.2)

∂η

∂v
(ū, v̄) = 0(3.3)

∂2η

∂u∂v
(ū, v̄)− ∂η

∂u
(ū, v̄)

∂η

∂v
(ū, v̄) = 0(3.4)

∂2η

∂u2
(ū, v̄) = 0.(3.5)

Then by Theorem 2.2, we have (ū, v̄) = (u∗, v∗). So from now we will
prove (2.7) ∼ (2.9) by using (3.1) ∼ (3.3), and confirm also that (u∗, v∗)
expressed by (2.8) and (2.9) satisfies (3.4) and (3.5). From (3.2) we have

0 = λ
∂W

∂x
+ σ2

0u
∗(t)

∂2W

∂x2

and hence

(3.6) u∗(t) = − λ∂W
∂x

σ2
0

∂2W
∂x2

.

And from (3.3) we have

0 = (a2 − a1)x
∂W

∂x
+

[
(σ2

1 + σ2
2)v

∗(t)− σ2
1

]
x2∂2W

∂x2

and hence

(3.7) v∗(t) = −
∂W
∂x

x∂2W
∂x2

· a2 − a1

σ2
1 + σ2

2

+
σ2

1

σ2
1 + σ2

2

.

Inserting (3.6) and (3.7) into (3.1), we obtain the following partial dif-
ferential equation for the optimal value function W :

0 =
∂W

∂t
+

(
a1x + µ− λ +

(a2 − a1)σ
2
1x

σ2
1 + σ2

2

)
∂W

∂x

+
x2σ2

1

2

(
1− σ2

1

σ2
1 + σ2

2

)
∂2W

∂x2

− 1

2

(
(a2 − a1)

2σ2
1x

σ2
1 + σ2

2

+
λ2

σ2
0

) (
∂W
∂x

)2

∂2W
∂x2

(3.8)
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with the boundary condition

(3.9) W (T, x) = U(x) = −1

c
e−cx.

We try to find a solution of (3.8) and (3.9) with the following structure:

(3.10) W (t, x) = −1

c
exp{−c[J(t) + H(t)(x−K(t))]}

with J(T ) = 0, H(T ) = 1 and K(T ) = 0 as terminal conditions. Then
it holds

∂W

∂t
= [J ′(t)+H ′(t)(x+K(t))−H(t)K ′(t)] exp{−c[J(t)+H(t)(x−K(t)]}.

Put

w(t, x) = J(t) + H(t)(x−K(t)).

Then we get

∂W

∂t
= [J ′(t) + H ′(t)(x + K(t))−H(t)K ′(t)]e−cw(t,x).(3.11)

Similarly we get

∂W

∂x
= H(t)e−cw(t,x)(3.12)

and

∂2W

∂x2
= −cH2(t)e−cw(t,x).(3.13)

Introducing (3.11), (3.12) and (3.13) in (3.8), it holds

0 =[J ′(t) + H ′(t)(x + K(t))−H(t)K ′(t)]e−cw(t,x)

+

(
a1x + µ− λ +

(a2 − a1)σ
2
1x

σ2
1 + σ2

2

)
H(t)e−cw(t,x)

+
x2σ2

1

2

(
1− σ2

1

σ2
1 + σ2

2

) (−cH2(t)e−cw(t,x)
)

+
1

2

(
(a2 − a1)

2σ2
1x

σ2
1 + σ2

2

+
λ2

σ2
0

)
H2(t)e−2cw(t,x)

−cH2(t)e−cw(t,x)
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or

0 =J ′(t) +
(a2 − a1)

2

2c(σ2
1 + σ2

2)
+

λ2

σ2
0

+ xH ′(t) +

(
a1 +

(a2 − a1)σ
2
1

σ2
1 + σ2

2

)
xH(t)

+ H(t)K ′(t) + H ′(t)− (µ− λ)H(t) +
cH2(t)x2σ2

1

2

(
1− σ2

1

σ2
1 + σ2

2

)
.

We can split this equation into three ordinary differential equations as
follows;

Equation (J):




J ′(t) +
(a2 − a1)

2

2c(σ2
1 + σ2

2)
+

λ2

σ2
0

= 0

J(T ) = 0.

Equation (H):




H ′(t) +

(
a1 +

(a2 − a1)σ
2
1

σ2
1 + σ2

2

)
H(t) = 0

H(T ) = 1.

Equation (K):




H(t)K ′(t) + H ′(t)− (µ− λ)H(t) +
cH2(t)x2σ2

1

2

(
1− σ2

1

σ2
1 + σ2

2

)
= 0

K(T ) = 0.

The solutions of Equation (J) and (H) are given by

(3.14) J(t) =

(
(a2 − a1)

2

2c(σ2
1 + σ2

2)
+

λ2

σ2
0

)
(T − t)

and

(3.15) H(t) = e−A(T−t),

respectively, where

A = a1 +
(a2 − a1)σ

2
1

σ2
1 + σ2

2

.
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Substituting (3.15) in Equation (K), it becomes

K ′(t)− AK(t)− (µ− λ) + Be−A(T−t) = 0,

where

B =
cx2σ2

1

2

(
1− σ2

1

σ2
1 + σ2

2

)
.

The solution of this equation satisfying K(T ) = 0 is given by

(3.16) K(t) = − B

2A

(
1− e−A(t−T )

)− µ− λ

A

(
1− eA(t−T )

)
.

Inserting (3.13), (3.14) and (3.15) in (3.10), we can see that the optimal
value function W (t, x) is given by (2.8).
Clearly (3.4) and (3.5) are fulfilled. In fact, from the definition of η(u, v),
we have

∂2η

∂u2
(u∗, v∗) = σ2

0

∂2W

∂x2

= σ2
0

(−cH2(t)
)
e−cw(t,x)

= −σ2
0cH

2(t)e−cw(t,x)

< 0

and

(
∂2η

∂u∂v
− ∂η

∂u
· ∂η

∂v

)
(u∗, v∗) = 0− σ2

0

[
x2(σ2

1 + σ2
2)

] (
∂2W

∂x2

)2

= −σ2
0

[
x2(σ2

1 + σ2
2)

]
c2H4(t)e−2cw(t,x)

< 0.

Inserting (3.12) and (3.13) into (3.6), we get

u∗(t) = − λ∂W
∂x

σ2
0

∂2W
∂x2

=

(
− λ

σ2
0

)
H(t)e−cw(t,x)

−cH2(t)e−cw(t,x)

=

(
λ

σ2
0

)
1

cH(t)
=

(
λ

cσ2
0

)
eA(t−T ).
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Finally inserting (3.12) and (3.13) into (3.7), we get

v∗(t) = −
∂W
∂x

x∂2W
∂x2

· a2 − a1

σ2
1 + σ2

2

+
σ2

1

σ2
1 + σ2

2

=
H(t)e−cw(t,x)

−cH2(t)e−cw(t,x)
· a2 − a1

σ2
1 + σ2

2

+
σ2

1

σ2
1 + σ2

2

=

(
1

cx

)(
a2 − a1

σ2
1 + σ2

2

)
eA(t−T ) +

σ2
1

σ2
1 + σ2

2

.

The proof of Theorem 2.3 is complete.
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