A Method to Minimize Classification Rules Based on Data Mining and Logic Synthesis

  • Kim, Jong-Wan (School of Computer and Information Technology, Daegu University)
  • Published : 2008.12.30

Abstract

When we conduct a data mining procedure on sample data sources, several rules are generated. But some rules are redundant or logically disjoint and therefore they can be removed. We suggest a new rule minimization algorithm inspired from logic synthesis to improve comprehensibility and eliminate redundant rules. The method can merge several relevant rules into one based on data mining and logic synthesis without high loss of accuracy. In case of two or more rules are candidates to be merged, we merge the rules with the attribute having the lowest information gain. To show the proposed method could be a reasonable solution, we applied the proposed approach to a problem domain constructing user preferred ontology in anti-spam systems.

Keywords