Insect Footprint Recognition using Trace Transform and a Fuzzy Method

Trace 변환과 펴지 기법을 이용한 곤충 발자국 인식

  • 신복숙 (부산대학교 전자계산학과) ;
  • 차의영 (부산대학교 컴퓨터공학과) ;
  • 우영운 (동의대학교 멀티미디어공학과)
  • Published : 2008.11.30

Abstract

This paper proposes methods to classify scanned insect footprints. We propose improved SOM and ART2 algorithms for extracting segments, basic areas for feature extraction, and utilize Trace transform and fuzzy weighted mean methods for extracting feature values for classification of the footprints. In the proposed method, regions are extracted by a morphological method in the beginning, and then improved SOM and ART2 algorithms are utilized to extract segments regardless of kinds of insects. Next, A Trace transform method is used to find feature values suitable for various kinds of deformation of insect footprints. In the Trace transform method, Triple features from reconstructed combination of diverse functions, are used to classify the footprints. In general, it is very difficult to decide automatically whether the extracted footprint segment is meaningful for classification or not. So we use a fuzzy weighted mean method for not excluding uncertain footprint segments because the uncertain footprint segments may be possible candidates for classification. We present experimental results of footprint segment extraction and segment classification by the proposed methods.

이 논문에서는 곤충 발자국의 패턴을 찾아 개체를 인식하기 위해서, 개선된 SOM 알고리즘과 ART2 알고리즘을 사용하여 인식의 기본 영역을 추출한다. 또한 Trace 변환을 이용하여 발자국의 인식에 필요한 특징을 추출하고 개체를 판단하는 기법을 제안한다. 제안한 기법에서는 모폴로지 기법을 이용하여 region을 먼저 찾고, 개선된 SOM과 ART2 알고리즘을 이용하여 곤충의 크기와 종류에 관계없이 세그먼트를 추출한다. 그리고 곤충 발자국과 같이 다양한 변형이 존재하는 패턴에 적합한 특징값을 찾기 위해서 Trace 변환을 이용하고, 함수의 조합으로 재구성된 Triple 특징값을 이용하여 곤충별로 고유한 패턴을 찾아 인식 실험을 수행한다. 곤충 발자국에서 명확한 발자국과 그렇지 못한 발자국을 자동으로 결정하는 것이 매우 어렵다. 따라서 이와 같이 불확실한 대상을 제외시키지 않고 가능성의 대상으로 판단하고 분류하기 위해서 퍼지 가중치 평균을 이용하여 인식을 수행한다. 제안한 방법에 의한 곤충 발자국의 영역 추출과 인식 실험을 실시하고 그 결과를 제시하였다.

Keywords