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The cognitive constraints of the human mind must drive the decisions in architecture and
methodology design in order that the systems we build are comprehensible. This paper presents
a methodology for the design of time-triggered embedded systems that leads to understandable
artifacts. We lift the design process to a higher level of abstractionto the level of computational
components that interact solely by the exchange of messages. The time-triggered architecture
makes it possible to specify the temporal properties of component interfaces precisely and
provides temporally predictable message communication, such that the precise behavior of a
large design can be studied in the early phases of a design on the basis of the component
interface specifications. This paper shows how the cognitive simplification strategies of
abstraction, partitioning and segmentation are supported by the time-triggered architecture
and its associated design methodology to construct evolvable embedded systems that can be
readily understood and modified.

Categories and Subject Descriptors: Systems Design and Computer Architecture [Embedded
Systems}

General Terms: Real-Time Systems, Robustness, Time-Triggered

Additional Key Words and Phrases: Interface Specification, Composability, Evolvability,
Cognitive Science, Complexity, Simplification Strategies

1. INTRODUCTION

As a consequence of Moores law, the cost of a logic function has decreased by more
than six orders of magnitude since the invention of the transistor fifty years ago. No
comparative improvement in the design productivity of embedded systems has been
realized over this period. As a consequence the cost of design and validation forms
the major cost part of the overall lifecycle cost of many of todays embedded systems.

Some of the successfully fielded embedded systems have evolved over the years and
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reached, due to the need for continued maintenance and enhancements [Belady and
Lehman 1976}, a level of complexity that challenges human comprehension. There is
thus a need for an architecture and an associated design methodology that leads to
understandable and evolvable designs. The idiosyncrasies of human cognition, as
researched in the field of cognitive science [Reisberg 2001], must drive design decisions
in architecture and design methodology development, such that the characteristics
of the evolving artifact match the constrained cognitive capabilities of the human
mind [Kopetz 2008].

One way to improve the understandability of a design and the design productivity
comes about if we lift the design process to a higher level of abstraction, to the level
of computational components that interact solely by the exchange of messages. The
clear identification of a component as a unit of functionality, comprehension and
data transformation, and the explicit deseription of the components interconnection
to its environment by the well-known message metaphor establish stable structures
that help to support the cognitive concept formation and the reasoning about the
system behavior. The possibility for a wide reuse of well-defined and self-contained
existing components, based solely on their interface specification, reduces the
development and integration efforts and leads to the aspired significant improvement
in the design productivity. A prerequisite for such a design methodology is the
availability of architectural services that support the precise interface specification of
the behavior of components and the behavior of communication systems in the
domains of value and time. The availability of a global time in the time-triggered
architecture [Kopetz and Bauer 2003] provides the looked-for means for such a
precise interface specification in the temporal domain.

The rest of the paper is structured as follows. In Section 2 we introduce basic
concepts of time-triggered systems. Section 3 gives an overview of our design
methodology. Section 4 deals with the design of the platform independent model
(PIM) and discusses the operational and semantic specification of the interfaces of a
component. Section 5 explains the message-based communication among components.
The topic of component restart and evolvability is covered in Section 6. The
implementation of the platform specific model (PSM) is dealt with in Section 7. The
paper terminates with a Conclusion in Section 8.

2. TIME-TRIGGERED SYSTEMS

In this Section we introduce the essential concepts of time-triggered systems.

At the system level, we distinguish between the distributed computer system under
consideration (we call it a cluster) and its environment. A cluster consists of a set of
components, connected by a cluster-internal time-triggered communication system
that transports messages among the components.

A component is a hardware/software unit that accepts input messages, provides a
useful service, maintains internal state, and produces after some elapsed physical
time output messages containing the results. A component is thus an isolated and
identifiable functional unit of data transformation and comprehension and forms an
abstract high-level concept in the mental model of the system behavior. The syntax
and semantics of the component service must be specified in a component-interface
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model without reference to the detailed component internals, i.e., the concrete
component implementation. In an embedded system the interface model must include
the temporal parameters of the intended component behavior. Preferably, the
interface model should specify the data-transformation algorithms of the component
in an executable form, such that the algorithms can be automatically translated into
the selected implementation technology.

A message is an atomic data structure that is formed for the purpose of transmitting
data and control signals from a sending component at a given instant to one or more
receiving components that receive the message at a later instant. A message should
be the only means for a component to interact with its environment. The message
concept does not make any assumption about (abstracts form) the specific transport
mechanism or about the meaning of the bit-vector contained in the data field of the
message. However, the physical time it takes to transport a message from the
sending component to the receiving component is part of the control aspect of the
message concept.

A cycle is a key concept in any time-triggered system. A cycle is a period of
physical time between the repetitions of regular events. A cycle is specified by the
duration of its period and the position of its start, the cycle start phase, relative to
some given global time reference. In order to avoid the exponential explosion in the
combination of cycles and thus a massive increase in the complexity, the rule is
established that all cycles must be in a harmonic relationship, i.e., the duration of
any cycle must be a power of two of the duration of the shortest allowed cycle. If we
use a binary representation of physical time, such as the IEEE 1588 time standard
[IEEE 2002], then any cycle duration can be defined by specifying a particular bit in
this binary time-representation. The start of a cycle, i.e., the cycle start phase, can
then be identified by specifying the oset of the start instant of the cycle from the
start instant of the respective period in the global time representation.

In a time-triggered system a global time of known precision is available within the
given ensemble of components, and a cycle is assigned to every time-triggered process.
At every cycle-start, a control signal is generated by the architecture to trigger this
time-triggered process. For example, a time-triggered message is sent or a time-
triggered action is started whenever the cycle-start associated with this process
occurs.

3. DESIGN METHODOLOGY

In this Section we give an overview over the design methodology that leads to
understandable and robust systems built within the context of the time-triggered
architecture.

3.1 Platform Independent Model

Computer-system design normally starts with a conceptualization of the intended
high-level behavior of the planned system. For example, when we intend to build a
computer-controlled braking system for a car, we start from a high-level behavioral
specification that relates the inputs to the outputs in the domains of value and time:
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Figure 1. Distributed Brake Control System.

When the brake pedal is pressed, the computer should initiate the braking action
within one millisecond.

"This high-level behavioral specification can be decomposed into a set of components
and messages. Figure 1 shows an example of such a decomposition that leads to a
distributed application system (DAS) for braking a car. In this example we introduce
seven components, one component, the pedal sensor component, for capturing the
brake pedal position, one central component, the brake control component, for
calculating the brake pressure, four wheel components for actuation of the brake
pressure and measuring the speed at the four wheels, and one monitoring component
to support diagnosis and restart. The pedal-sensor components send messages about
the current pedal positions to the brake-control component. The four wheel components
send messages containing the current speed of each wheel to the brake-control
component and receive, from the brake-control component, messages indicating the
brake pressure that should be applied at each wheel. Finally, the monitoring
component receives all messages to check the sanity of the components, perform on-
line diagnosis in case of an error and initiate a quick component restart if required.

We call such a high-level component-based decomposition of a distributed system
a Platform-Independent Model (PIM) [OMG 2001} if the intended behavior of the
PIM components and PIM messages is specified in the domains of value and time
without any reference to a concrete execution platform.

3.2 Platform Specific Model

In a later phase of the design process, the PIM model of our application is transformed
such that it can be executed on the selected target hardware platform [Huber et al.
2006]. We call the platform-specific component-based description of a distributed
system the Platform Specific Model (PSM) [OMG 2001].

For example in our example of a brake system a PIM component could later be
transformed to a PSM component that provides the specified functionality either by
software on the selected CPU, or by an FPGA (field programmable gate array) or by
an ASIC (application specific integrated circuit).

It is a fundamental characteristic of our design methodology that we
assume a strict one-to one mapping of PIM components to PSM compo-
nents.
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A component is thus a stable concept that remains the same at the level of service
conceptualization and at the level of implementation, thus contributing to the
principles of stability and cognitive economy. Since the interface behavior of a PIM
component and the corresponding PSM component are exactly alike in the domains
of value and time, any behavioral analysis that is carried out at the PIM level will
remain valid at the PSM level. This strict one-to-one mapping of PIM components to
PSM components helps to solve the technology obsolescence problem as well: If a
given application has to be ported to a new target platform (since the old hardware is
not available any more), it is only necessary to recompile the original PIM compo-
nents to PSM components that are supported by the new hardware platform.

In our approach every component is also a well-defined fault-containment region
at the level of conceptualization and at the level of implementation. Any fault in a
component manifests itself as an erroneous message. A message can be erroneous
either in the domain of time or in the domain of values. If the messages are time-
triggered, then errors in the time domain can be detected at the component boundaries
by architectural error-detection mechanisms, since the correct arrival time of each
message is known a priori. Errors in the value domain have to be detected at the
application level.

4. COMPONENT SPECIFICATION - THE PIM

Critical to the proposed design methodology is the precise specification of component
behavior at the component interfaces. In this Section we first elaborate in detail on
the component characteristics, before discussing the operational and meta-level
specification of the component interfaces.

4.1 Component Characteristics

As mentioned before, from a behavioral point of view a component is considered to
be a hardware/software unit that accepts input messages, provides a useful service,
maintains internal state, and produces after some elapsed physical time output
messages containing the results. We call the interface, where the service of a component
is oered to the rest of the cluster, the Linking Interface (LIF) of the component
[Kopetz and Suri 2003a]. In order to support the simplification strategy of partitioning

Technology
Independent
Interface (TTI)

Linking
Interface
(LIF)

Local
Interfaces

Component
(HW/SW Unit)

3L

Technology
Dependent
Interface (TDI)

Figure 2. Component Interfaces.

Journal of Computing Science and Engineering, Vol. 2, No. 4, December 2008



On the Design of Distributed Time-Triggered Embedded Systems 345

[Kopetz 2008], we introduce in addition to the LIF, three further interfaces of a
component (Figure 2): the Technology Independent Interface (TII), the Technology
Dependent Interface (TDI) and none, one or more Local Interfaces. Ifa component
contains no local interface we call it a closed component. A component with a local
interface is called an open component. The distinction between open and closed
components is of fundamental importance, as outlined in Section 4.4.

We introduce these four dierent interfaces because each one of them serves a
dierent purpose and has to be understood by a dierent clientele:

The LIF is the only interface that is of relevance for the component integration
into a cluster. Its specification must contain all information that the integrator needs
to be aware of and should not contain any further information.

The Technology Independent Interface (TII) of a component is used to configure a
component for the concrete application, to control the execution speed of a component
in order to optimize its power consumption, and to set the internal state of a
component to the proper value at component start and at the next restart instant in
case the internal state of the component has been corrupted (see also Fig. 3 in
Section 6). For example, the assignment of port addresses in order to integrate a
component into a given environment is done via the TII. The TII is agnostic about
the component implementation.

The Technology Dependent Interface (TDI) interface of a component is used to
provide a maintenance technician a view into the internals of the concrete component
implementation. It is used for debugging a component and is thus implementation
dependent. The TDI is of no relevance to the user of a component who is only
interested in the component services at the LIF.

The Local Interfaces of an open component are used to interface a component to
its cluster-external environment, e.g., to the man-machine interface, or to other
clusters. The semantics of these local interfaces must be part of the semantic LIF
specification, as far as they are of relevance to the user of the component.

In our example of the braking system (Fig. 1), the detailed syntactic structure and
semantics of the local interface of the brake-pedal-position sensor to the brake-pedal
sensor component is of no relevance at the system level, since the semantics of this
local interface is covered by the LIF specification of the brake-pedal-sensor component.

The LIF specification of a component is required to be -as far as theoretically
possible — self-contained. It must provide a complete description of the component
behavior as seen from the viewpoint of a LIF user. The LIF specification is the
mediator between a service supplier and the service user of a component. The LIF
specification must describe the component behavior in the value domain and in the
temporal domain and should be complete and minimal in the sense that it contains
all information required to understand and use the services of a component that are
oered at the particular LIF and nothing more. The LIF specification should be
agnostic about the component implementationit must be the same for the PIM
component and for the corresponding PSM component. From the point of view of a
user of a component it should not be distinguishable, whether the components
functionality is implemented by software that is executed by a CPU, by an FPGA
fabric, where the interconnections of the logic elements are controlled by software, or
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by a hardware ASCI (application specific IC) where the logic is part of the hardware.
We dierentiate between the operational LIF specification and the semantic LIF
specification.

4.2 Operational LIF Specification

The operational LIF specification covers the syntactic specification of the data items
contained in the input and output messages of the component, and the temporal
specification of the message send and receive instants as well as the syntactic
structure of the component state as seen from this interface at the restart instant (see
Section 6). Since the operational LIF specifications are instrumental for the
interoperability of components i.e., the exchange of information among components,
they must be precise and formal.

The temporal specification of the messages will be dierent for time-triggered and
event-triggered messages. For a time-triggered message, the configuration of the
cycle associated with a T'T message provides for a precise temporal specification of
the time-triggered message. For an event-triggered system, the message queues
associated with the sender and receiver of the message must be specified (see also
Section 5.1).

In the value domain, the operational specification of the messages structures the
incoming and outgoing bit streams contained in the messages by establishing named
data items. The syntactic specification of these named data items is a well-
understood topic. Standardized interface definition languages, such as the Interface
Definition Language (IDL) of the Object Management Group (OMG), are in use for
the syntactic specification of data items exchanged across LIFs. The names of the
syntactic data items form the link between the operational level and the semantic
level of the LIF specification.

A time-triggered component, where the control signal to start a component
activity is derived from the progression of the global time, has a higher degree of
autonomy than an event-triggered component, where the control signal to start a
component internal action is derived from the arrival of a message that originates
from the outside of the component. The reasoning about the temporal behavior of a
time-triggered component does not have to step beyond the component interface and
is thus self-contained. The strict temporal order established by a time-triggered
operation limits concurrency (which the human mind is ill-equipped to handle} and
establishes the basis for sequential step-wise reasoning, thus supporting the
simplification strategy of temporal segmentation [Kopetz 2008]. It follows that it is
inherently simpler to reason about and understand the temporal behavior of a time-
triggered component than to understand the behavior of an event-triggered component.

4.3 Protocol Abstraction

In many scenarios it useful to introduce the protocol abstraction: the grouping of a
number of related messages (e.g., request and response messages on dierent channels)
into a single higher level construct, a message protocol [Salloum 2007]. For example,
the TCP/IP protocol that groups together two channels (one request, one response)
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to perform a higher level error-controlled data exchange service is an example for
such a higher-level protocol. A protocol abstraction can be compared to a MACRO
in a programming language, where the MACRO stands for a higher-level concept of
some composite communication actions that can be decomposed into its elementary
parts if desired. Such a decomposition of a higher-level protocol into its constituent
messages is required if we need to observe the message traffic originating form a LIF
for the purpose of component diagnostics.

4.4 Semantic LIF Specification

The semantic LIF specification assigns meaning to the data items, to the names,
introduced in the operational specification. It thus bridges the gap between the
structured data items formed at the syntactic level and the users mental model of the
services provided at the LIF. Central to this semantic specification is the LIF service
model.

A user of a component employs the component with the intent to achieve a goal,
i.e. to contribute to the solution of her/his problem. The relationship between user
wntent and the services provided at the LIF must be exposed in the LIF service
model. Concepts that are familiar to a prototypical user must thus be the basic
elements of the LIF service model. For example, if a user is expected to have an
engineering background, terms and notations that are common knowledge in the
chosen engineering discipline should be utilized in presenting the corresponding
service model.

The LIF service model of a component diers from the model describing the
algorithms implemented within a component. The LIF service model is goal oriented,
while the algorithmic model is process oriented. A goal-oriented model specifies the
intended goal state, while algorithmic model specifies the actions that must be taken
in order to reach this intended goal state.

Furthermore, the LIF service model of an open component goes beyond the compo-
nent boundaries. It must include all relevant properties of the components environ-
ment that are connected to the local interfaces of the component. It is thus not
possible to specify the semantics of the LIF service model of an open component
without knowing the precise context of use of the open component [Kopetz and Suri

Table I. Comparison of the Algorithmic Model and the LIF Service Model of an Open
Component

Algorithmic Model LIF Service Model

Orientation Process Goal state
Properties of the controlled environment Not included Included
Scope Component internal | Internal plus external
Full operational Specification of the LIF of an . .

. possible possible
isolated open component

Full semantic Specification of the LIF of an possible Not possible

isolated open component
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2003b]. It is however possible to specify the algorithmic model of an isolated open
component. :

Take the example of the brake control system of Figure 1. There is one closed
component, the brake control that contains no local interface. The LIF of this
component can be fully specified in isolation at the syntactic level and at the semantic
level, since all inputs and outputs are part of the LIF. However for the open compo-
nents at the wheels, the relation between the brake forces and the wheel speeds
depends on a number of parameters that are outside the wheel components: the
weight of the car, the condition of the road surface, and the inclination of the road,
ete.

In many situations the formal specification of a comprehensive semantic LIF model
of an open component will not be possible. However, the operational specification of
an open component must be formal and complete to ensure the interoperability of
the components. For a more detailed discussion about the LIF specification see
[Kopetz and Suri 2003a].

5. MESSAGE COMMUNICATION

In the time-triggered architecture, the basic communication mechanism among
components is the exchange of deterministic multicast unidirectional messages. The
message communication among the components makes the interaction of a component
with its environment explicit and eliminates hidden dependenciés among components.
Higher-level inter-process communication mechanisms, e.g., shared memory, can be
built on top of this basic message exchange mechanism.

Determinism in the communication is introduced for the following reasons:

(1) Timeliness: Many embedded systems require timely responses. The general
notion of determinism [Kopetz 2008] subsumes predictable timing.

(2) Complexity reduction: it is much easier to reason about the behavior of a
communication system, if the message transport, is deterministic, i.e. it is exactly
known at what instant a message will arrive, than if the behavior of the
communication system is probabilistic [Kopetz 2008].

(3) Testing: The testability of a system is improved, if the system will produce the
same outputs given it has been oered identical inputs [Schiitz 1993].

(4) Active Redundancy: The implementation of active redundancy requires a
deterministic behavior of the replicated components.

Multicast communication is supported as a basic communication property in order
to enable the observation of the behavior of a component by an independent external
observera monitorwithout introducing the probe eect [Schiitz 1993).

Only wunidirectionality can be implemented in a communication system as an
elementary service. Bi-rectionality is a composite service that includes, in addition
to the behavior of the communication system, the behavior of the receiving compo-
nents. Unidirectionaly thus supports the strict separation of communication from
computation and supports the simplification strategy of partitioning.

A component can have one or more interfaces, where each interface contains one or
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more ports. Each port is used for the sequential sending or receiving of a single message
at an instant. Depending on the control schema, we distinguish between three types
of messages (and the corresponding ports): event-triggered messages, time-triggered
messages and data-streams.

5.1 Event-triggered Message

The event-triggered control schema is the usual control schema associated with the
message concept. An event-triggered message is sent whenever a significant event
occurs at the sender. Event-triggered message must conform with the ezactly-once
semantics, i.e., every message produced by a sender must be eventually consumed
exactly once by its receiver(s). In case the communication channel is not free at the
instant of event-occurrence, the event-triggered message must be stored in a queue
at the senders site before it can be transmitted by the network. Similarly, an event-
triggered message that is delivered from the network to the destined receiver must be
stored in a message queue before the receiver in case the receiver is not ready to
accept the message at the moment of message arrival. There are thus (at least) two
queues associated with every event-triggered message, one at the sender and one at
the receiver. The sizing of these queues depends on the uniformity and rate of
message production at the sender, the uniformity and rate of message consumption
at the receiver and the available capacity of the communication channel. For
example, if we have a large-bandwidth channel, the queue at the sender will be small
and the queue at the receiver will be large. If we have a small bandwidth channel, it
may be the other way around,

We distingnish between two types of event triggered messages, depending on the
bandwidth allocation to the communication channel. If a fixed (static) bandwidth is
assigned to every event-triggered channel, we call the comumunication channel
predictable. In a system with predictable event-triggered communication channels,
the sizing of the two queues can be performed in the local context of sender and
receiver. An example of a communication system with a predictable channel is a
time-triggered channel in TT Ethernet [Kopetz and et al. 2005] that is deployed for
transmission of event-triggered messages.

If the bandwidth assigned to a sender is dynamic, depending on a the activity of
other senders that use the same communication channel, then we call the communi-
cation channel best effort. In a system with a best-effort channel, the seizing of the
two queues can be performed only in the global context of all users of the channel.
Examples for a communication system with best-effort channels are standard Ethernet
or the CAN [Press 1990] protocol, that is widely used in the automotive environ-
ment.

Since it is diffeult to assure that a best-effort unidirectional channel will deliver a
message within a given time-interval, a higher-level protocol that binds two event-
triggered channels together is commonly formed to be able to inform the sender of
the successful receipt of the message and realize a time-constrained error-detection
service in case a message does not arrive within the given protocol-specific time
interval. If an acknowledgement message is not received with this specified time
window, the original message is resent (PAR Protocolpositive acknowledgement or
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retransmission).

It is difficult to give precise temporal guarantees to event-triggered messages, since
the delay of the event-triggered messages in the sender queue and the receiver queue
is difficult to quantify, even if the communication system is predictable.

5.2 Time-triggered Message

A cycle is assigned to every time-triggered message. The time-triggered message is
sent whenever the periodic cycle start that has been assigned to this message occurs.
The cycles assigned to the time-triggered messages must be planned a priori by a
message scheduler, in order to avoid any message conflicts among time-triggered
messages. At the instant of cycle-start of a time-triggered message, the contents of
the message buer at the senders site are fetched by the communication system and
transmitted to the receivers (non-consuming read) within a know interval. At the
instant of message delivery by the communication system, the content of the
message buer at the receivers site is overwritten by the arriving time-triggered
message. There are no queues associated with time-triggered messages. Since the
time-triggered communication system is free of conflict and deterministic it is
possible to associate temporal guarantees with time-triggered messages. Time-
triggered messages are well suited to transmit data items with state semantics in
periodic control systems.

From a conceptual point of view, communication by time-triggered messages is
easy to comprehend because a time-triggered message provides a powerful abstraction
of the components environment — a temporal firewall to the component environment
[Kopetz and Nossal 1997]. At the receivers side the message buer of a (periodic)
time-triggered message always contains an image [Kopetz and Kim 1990] of the
most-up-to-date value of a remote state variable. This value can be accessed locally
just like the value of any other local variable. The message buer of a time-triggered
message provides the only interface to the external world and eliminates control-
error propagation from the external environment into the component by design. The
cycle of the time-triggered message determines the worst-case temporal validity of
the accessed value.

In a time-triggered system, the detection of a lost or corrupted message can be
performed by the receiver on the basis of the a priori knowledge about the expected
arrival time of the periodic time-triggered messages. Examples for time-triggered
protocols are the TTP, FlexRay [R. Mores et al. 2001] or time-triggered (TT)
Ethernet [Kopetz and et al. 2005].

In our brake example of Figure 1, the freshest values of the speed sensors are
delivered periodically to the brake-control component by a time-triggered communi-
cation system.

5.3 Data Stream

A data stream is a regular sequence of timed messages that is produced by a sender
and consumed by a receiver. Data streams are important in multimedia systems.
The temporal interval between any two messages of the data stream is known a
priori. It is thus possible to perform on-the-fly processing of data streams in this
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Figure 3. Timing of the Component Restart.

temporal interval. Data streams have the temporal properties (precise instant of
transmission) of time-triggered messages and value properties (ezactlyonce-semantics)
of event-triggered messages. In a time-triggered architecture it is possible to
synchronize data-streams from dierent sources which makes this architecture well-
suited for multi-media applications (e.g., lip synchronization by synchronizing an
audio stream with a video stream).

Since the production rate and consumption rate of multimedia messages is often
content dependent, it is common to associate watermarks with a data stream to
monitor the length of the sender and receiver queues. A higher-level protocol sends
these watermarks from the receiver to the sender in order to inform the partners
about the fill-level of the queues and alert the producer of messages about the need to
adapt the production rate of messages.

The precise synchronization of the producer and consumer of multimedia messages
reduces the need for intermediate buers and saves storage and energy, which is of
special importance in portable devices.

5.4 Virtual Networks

Given the basic communication primitives introduced above, it is possible to
implement any virtual network at a higher level [Obermaisser and Peti 2005]. For
example, it is possible to give to the application programmer the interface of a given
legacy communication system, such as the CAN (Control area network) with

temporal properties that are in agreement with the CAN specification [Obermaisser
2006].

6. COMPONENT RESTART AND EVOLUTION

The era of nano-scale devices will bring an increase in the soft error-rate of micro-
electronic devices [Calhoun and et al. 2008]. It is therefore expedient to provide
systematic means to handle transient device failures at the architectural level in
order to increase the robustness of an embedded system. In the proposed component-
based architecture, every component forms a fault-containment region. A transient
fault, e.g., one caused in the hardware by ambient cosmic radiation or by a Heisenbug
[Gray 1986] in the software, can result in a corruption of the internal state of the
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component and possibly in an erroneous output message. If the failure is detected
and the corrupted state can be corrected quickly, the component can be brought
back into full service and the transient fault has been tolerated.

In order to enable the swift recovery of a component in case its internal state has
been corrupted by a transient fault, it is necessary to plan during the design for
recovery instants, i.e., periodic instants where the internal state of a component is
well-defined and small. We call such a small state where no process is active and all
communication channels are empty a ground state [Kopetz 1997] and the corre-
sponding (periodic) instant the restart instant. Ina state-aware design, the precise
specification of the ground state at the restart instants must be part of the design.
We propose that the ground-state of a component is periodically published in a
ground state message immediately after the restart instant in order that the health
of the ground state can be monitored by an external monitoring component (see Fig.
3). This external monitoring component must be part of an independent fault
containment region, such that a failure of the component-to-be-monitored and the
monitor are not correlated. The monitor component can check the existence and
correctness of the ground state message and, in case an error is detected, calculate a
proper restart state that will be relevant at the next restart instant (Fig. 3 which
depicts a cyclic representation of time). Immediately before this next restart instant,
the monitor component will send a recovery message that contains the relevant
restart state to the TII interface of the erroneous component. The arrival of this
recovery message at the TII interface will cause a component reset and a restart of
the component with the provided restart state at the next restart instant.

In the example of the brake system of Figure 1, the monitor component will
periodically receive the ground state of all other components. In case any one of these
ground state messages is missing or the ground state is erroneous, the monitor
component will reset and restart the failed component such that the component
service will be reestablished after the outage of at most two restart periods.

Successful long-lived systems evolve continuously. Over time the system is
expanded, new components, sensors and actuators are added and the functionality of
existing components is modified. As long as the operational message-based interface
specification of a component remains unchanged, modifications in the functionality
of a component or in its local interfaces do not impact the operational structure of
the rest of the system. Since the basic communication system among components is
unidirectional and multicast, new information-consuming components can be added
and the external behavior of components can be observed without disturbing the
operation of the existing legacy system. For example, an existing component can be
expanded to form a new cluster, without changing the component interface to the
existing legacy cluster.

7. COMPONENT IMPLEMENTATION-THE PSM

The design methodology, which has been outlined in the previous Sections, requires
proper services at the architectural level. In the context of the EU IST project
GENESYS (Generic Embedded System Architecture) we work towards a generic
embedded system architecture that will provide the needed architectural services,
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such as clock synchronization, ground state monitoring, multicast unidirectional
message transmission etc.. GENESYS introduces three levels for the integration of
components, the chip level, the device level and the closed or open system level. At
the open system level, devices normally communicate via wireless channels and can
enter and leave an ensemble dynamically.

7.1 Chip Level: A Component as an IP-Core

A component can be implemented in the form an IP-Core of an heterogeneous
Multiprocessor-System-on-Chip (MPSoC). Since a component is a self-contained
functional unit that communicates with its environment solely by the exchange of
messages, the corresponding IP-core must contain all resources that are needed to
provide such an autonomous function. A processor-based IP-core consists of a CPU,
local memory for instructions and data, the message interfaces as well as the system
and application software to realize the specified functionality. An FPGA based IP-
core consists of the hardware gates and the software for the interconnection logic. In
an ASIC implementation, the complete control logic is implemented in hardware.
Although in a time-triggered system all three implementations provide the same
functional service with the same external timing, they can have very dierent meta-
functions characteristics, such as energy efficiency or silicon real-estate requirements.

7.2 The Time-Triggered NoC

If the components of an applications are mapped into IP-cores of an MPSoC, then
the communication network becomes a time-triggered Network-on-Chip (T'T-NoC).
In order to maintain the architectural property of independent communication
channels, this NoC must avoid any dynamic global resource sharing. In an NoC the
distances between the nodes are short and the communication channel can be highly
parallel. It is thus possible to build networks with a very high bandwidth (hundreds
of Gigabits) without undue eort. In a TT-NoC we can thus aord to assign a dedicated
time-triggered slot to every single communication link. This gives us a deterministic
time-triggered network free of any hidden interferences among communicating
partners.

The TT-NoC establishes the global time among the components. However, the
components themselves form islands-of-synchronicity, where the clock-rate of each
component can be controlled via its TII interface in order to optimize its power
consumption. The clock domain-crossing between a component and the TT-NoC
takes place in the network interface of the component. The architecture thus
provides a global time without the need of a global clock.

7.3 Device Level: Time-Triggered Ethernet

Inter-chip and inter-device communication are more expensive than intra-chip
communication via an NoC. Here we require a communication infrastructure that is
sensitive to the cabling costs and thus shifts the tradeo between channel cost and
network control into the direction of a more elaborate network control. The time-
triggered Ethernet protocol, which is fully compatible with the Ethernet standard
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and provides in addition to the standard event-triggered best-eort Ethernet service a
temporally predictable time-triggered service satisfies our requirement for a cost-
eective inter-device communication system.

7.4 Safety Concerns -Component Allocation

If the braking application of Figure 1 were a non-safety critical application, we could
integrate all seven components of Figure 1 as IP cores on a single MPSoC. However,
in a safety-critical application, such as a braking system, such an integration of all
components on a single die is not feasible, because in a safety case it is commonly
assumed that any chip can fail in an arbitrary failure mode with a probability of 106/
hour, while the overall system reliability has to be better than 10-9 failures/hour. In
such a safety-critical application it is thus necessary to introduce redundancy by
replicating components and allocating them to dierent chips in such a way that the
arbitrary failure of any one chip or of any one physical connection can be tolerated
without the total loss of the system service.

Common-mode failure concerns are thus a decisive argument when allocating
components to chips in a safety-critical environment. In the time-triggered architecture
all IP cores on a single chip are free of any hidden design dependency. It is thus
possible to integrate application subsystems of dierent criticality on the same chip,
since a lower-criticality subsystem cannot interfere with a higher criticality subsystem.
In an automotive control system, where the number of physical ECUs (electronic
control units) has to be small, the component-to-hardware allocation will consider all
distributed application subsystems together and try to find an allocation that meets
all constraints (safety, wiring, space, cost, etc.) in an nearly optimal manner. To a
significant extent, the physical structure of a safety-critical system will be determined
by the requirements of independence of the replicated components that are introduced
to meet safety concerns.

8. CONCLUSIONS

In this paper we presented a design methodology for the component-based design of
robust time-triggered distributed embedded systems that are simple to understand
and can be modified without difficulty. This design methodology supports the three
conceptual simplification strategies of abstraction, partitioning and segmentation.
The rigorous one-to-one mapping of software components to hardware components
at all levels of the design, the strict message orientation and the precise specification
of the linking interfaces of components in the domains of value and time are the
characteristics for this design methodology. As a consequence of this one-to-one
software/hardware mapping every component forms a well-defined fault-containment
region with a pragmatic restart strategy in case a transient hardware fault or a
Heisenbug in the software corrupts the internal state of the component. The key
issue of this design methodology is the specification of the message-based linking
interfaces of a component. A distinction is made between the operational interface
specification and the semantic interface specification. While the operational interface
specification of all components must be precise in the domains of time and value, the
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semantic interface specification of an open component can only be established if the
context of use of the component is known.
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