약학회지 제 52 권 제 6호 514~519 (2008) Yakhak Hoeji Vol. 52, No. 6

2-Phenyl-4-quinolones와 Methyl Iodide의 친핵반응에 의한 유도체의 합성

오미정 · 박명숙#

덕성여자대학교 약학대학 (Received November 13, 2008; Revised November 19, 2008)

Nucleophilic Reaction of 2-Phenyl-4-quinolones with Methyl Iodide and Preparation of Its Derivatives

Mi-Jung Oh and Myung-Sook Park[#] College of Pharmacy, Duksung Women's University, Seoul 132-714, Korea

Abstract — We developed a convenient synthetic route to 3-alkylated 2-phenyl-4-quinolone derivatives (4a-h and 5a-c), which were expected to retain antitumor activity. A series of 2,3-dihydro-2-hydroxy-2-phenyl-4-quinolones (3a-h) was synthesized through dehydration, dealcoholation and hydration using acid-catalyzed one-pot reaction from anilines and ethyl benzoylacetates. 3-Methyl (or 3,3-dimethyl)-2-phenyl-4-quinolone derivatives 4 and 5 were synthesized from 3a-h through the methylation using methyl iodide. Formation of quinolone nucleus was undertaken with *p*-toluenesulfonic acid (*p*-TSA) at 90~110°C in toluene for 3~7.5 hr over the Dean-Stark apparatus. The key intermediates in these preparations are β -ketoesters 2a-h, which can be readily obtained from the corresponding anilines 1a-e by reaction with ethyl bezoylacetates.

Keywords 🗆 3-alkyl-2-phenyl-4-quinolone, C-methylation, monomethylated quinolones, dimethylated quinolones

과일이나 채소 등에 많이 들어있는 flavonoid 유도체는 다양한 생리활성을 나타내고 있으며, 그 중 항암작용을 가지고 있는 성 분도 보고되었다. Flavonoids 계열의 성분 중 항암작용을 나타내 는 것으로는 eupatilin,¹⁾ nobiletin, baicalein, quercetin, isorhamnetin, flavone-8-acetic acid(FAA),^{2,3)} xanthenone-4-acetic acid(XAA) 및 5,6-dimethylxanthenone-4-acetic acid(DMXAA) 등이 알려져 있다(Fig. 1). 본 연구에서는 flavanone이나 XAA와 같은 flavanone 유도체의 구조를 밑바탕으로 하여 flavanone의 aza 유도체를 설계하였다. 즉, flavanone B ring의 oxygen대신 nitrogen으로 동족 치환시킨 구조들을 합성하여 항암효과가 예상 되는 후보물질들을 개발하고자 한다.

Flavanone 구조를 변환시킨 목표화합물의 핵심구조는 2-phenyl-4-quinolone이다. 2,3-Dihydro-2-phenyl-4-quinolones은 flavanone 구조의 oxygen대신 nitrogen으로 대체시킨 aza 유도체이며, quinolone 계열의 공통구조이고 약효발현의 pharmacophore이기 도 하다. Li 등은 2-phenyl-4-quinolone 유도체를 합성하고

(전화) 02-901-8395 (팩스) 02-901-8386

antitumor agent의 가능성을 보고하였다.^{4,5)} Kuo 등도 2-phenyl-4-quinolone 유도체 등을 합성하고 그들의 cytotoxicity를 보고한 바 있다.⁶⁾ 최근, Watterson 등⁷⁾ 및 Xia 등은⁸⁾ 2-phenyl-4-quinolone acetic acid 및 ester 유도체 등을 합성하고 그의 항암활성 및 IMPDH 억제능을 보고하였다.

본 저자는 이미 Kuo 등의⁶⁾ 합성방법을 응용하여 새로운 2,3dihydro-2-phenyl-4-quinolone 유도체^{9a)} 및 그의 asymmetric dimer들을^{9b,9c)} 합성하고 이를 보고한 바 있다(Fig. 2). Aniline과 ethyl benzoylacetate를 이용하는 이 합성방법은 목적화합물의 분 리에 어려움이 있어 제조가 쉽지는 않다. 그러나 이 계열에서 잠 재적 항암활성이 높은 선도물질들을 탐색하기 위해서는 다양한 화합물들이 더 연구되어져야 한다. 본 연구에서는 잠재적인 항 암후보물질로서 quinolone핵의 3위치가 alkyl기로 치환된 다양한 2-phenyl-4-quinolone 유도체를 합성하고자 한다.

실험 방법

시약 및 분석기기

Anilines, ethyl benzoylacetates 등 대부분의 시약은 Aldrich 사에서 구입하였고 Bruker사의 300 MHz NMR spectrometer를

[#]본 논문에 관한 문의는 저자에게로

⁽E-mail) mspark@duksung.ac.kr

Fig. 1 - Chemical structure of flavanones with anticancer activity.

Fig. 2 - Reported 2-phenyl-4-quinolones and target 3-alkylated 2-phenyul-4-quinolones.

사용하여 proton과 carbon nuclear resonance를 측정하였다. 이 때 모든 화학이동은 TMS를 reference로 하였으며 ppm단위로 기록하였다. IR spectrum은 Perkin-Elmer FT-IR Spectrometer Spectrum GX을 사용하여 NaCl cell로서 thin-film으로 측정하였 다. 반응의 진행은 Silica-gel 60F 254로 피막된 TLC plate를 이 용하여 hexane : ethyl acetate(2/1, 1/1), methylene chloride : methyl alcohol(9/1) 등으로 전개시켰으며, spot은 UV light로 확 인하였다.

2,3-Dihydro-2-hydroxy-3-methyl-2-phenyl-4-quinolones (4a)의 합성

Acetone 10 ml에 건조된 K₂CO₃(0.41 g, 3 mmol)와 methyl iodide(0.25 ml, 4 mmol) 및 quinolone **3a**(0.48 g, 2 mmol)를 가 한다. 반응혼합액을 3시간 동안 상온에서 교반하며 반응시켰다. TLC로 반응의 종결을 확인한 후, 용매를 갑압농축시켰다. 반응 농축액을 ethyl acetate 30 ml에 녹이고 H₂O 15 mlz 3회 세척 후, 유기층만을 분리하였다. 유기층을 Na₂SO₄로 건조한 후 용매 를 갑압농축하여 제거하였다. 반응혼합물을 ethanol로 재결정하 여 흰색결정(4a)을 얻었다

Yield: 81%, mp 135°C. ¹H NMR(CDCl₃) δ 7.89(s, 1H, NH), 7.86(s, 1H, aromatic), 7.64(s, 2H, aromatic), 7.45(m, 2H, aromatic), 7.32(m, 4H, aromatic), 7.09(t, *J*=6.9 Hz, 1H, aromatic), 4.50(q, *J*=14.4 Hz, 1H, CH), 1.62(d, *J*=14.4 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 200.27(C=O), 168.89(C-O), 138.08, 136.01, 134.49, 129.73, 129.35 129.09, 124.94, 120.55 (aromatic), 50.44(CH), 17.70(CH₃). IR(NaCl cm⁻¹) 3433(NH), 3055(aromatic), 2928(CH₃), 1713(C=O), 1628(C-O).

6-Acet oxy-2,3-dihydro-2-hydroxy-3-methyl-2-phenyl-4quinolone(4b) – Yield: 73%, mp 139°C. ¹H NMR(CDCl₃) δ 8.02(s, 1H, NH), 7.86(s, 1H, aromatic), 7.65(s, 2H, aromatic), 7.47(m, 2H, aromatic), 7.35(m, 4H, aromatic), 4.50(q, *J*=14.4 Hz, 1H, CH), 2.56(s, 3H, COCH₃), 1.62(d, *J*=14.4 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 200.27(C=O), 199.75(C=O), 168.89 (C-O), 138.08, 136.01, 134.49, 129.73, 129.35, 129.09, 124.94, 120.55(aromatic), 50.44(CH), 26.69(COCH₃), 17.70(CH₃). IR (NaCl cm⁻¹) 3433(NH), 3054(aromatic), 2927(CH₃), 1712 (C=O), 1629(C-O).

7-Acetoxy-2,3-dihydro-2-hydroxy-3-methyl-2-phenyl-4quinolone (**4c**) – Yield: 68%, mp 135°C. ¹H NMR(CDCl₃) δ 9.11(s, 1H, NH), 8.09(s, 1H, aromatic), 8.03(d, *J*=7.2 Hz, 2H, aromatic), 7.86(d, *J*=8.1 Hz, 1H, aromatic), 7.67(d, *J*=8.2 Hz, 1H, aromatic), 7.6(t, *J*=8.0 Hz, 1H, aromatic), 7.48(t, *J*= 6.8 Hz, 2H, aromatic), 7.37(s, 1H, aromatic), 4.56(q, *J*=14.5 Hz, 1H, CH), 2.57(s, 3H, COCH₃), 1.63(d, *J*=14.4 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 199.71(C=O), 198.04(C=O), 168.81 (C-O), 138.25, 137.69, 135.47, 134.16, 129.26, 128.97, 128.69, 124.69, 124.25, 119.71(aromatic), 49.87(CH), 26.69(COCH₃), 17.29(CH₃). IR(NaCl cm⁻¹) 3443(NH), 3054(aromatic), 2924 (CH₃), 1713(C=O), 1628(C-O).

2,3-Dihydro-2-hydroxy-3-methyl-2-(3',4'-dimethoxyphenyl)-**4-quinolone(4d)** – Yield: 92%, oil. ¹H NMR(CDCl₃) δ 7.89(s, 1H, NH), 7.62(d, *J*=8.5 Hz, 1H, aromatic), 7.53(m, 3H, aromatic), 7.31(t, *J*=7.8 Hz, 2H, aromatic), 7.09(t, *J*=7.2 Hz, 1H, aromatic), 6.92(d, *J*=8.5 Hz, 1H, aromatic), 4.50(q, *J*= 14.4 Hz, 1H, CH), 3.89(s, 6H, OCH₃ × 2), 1.59(d, *J*=14.4 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 199.79 (C=O), 170.67(C-O), 164.06(C-O), 154.40(C-O), 137.62, 129.12, 128.98, 124.49, 123.99, 120.10, 110.23, 110.20(aromatic), 56.20(OCH₃), 56.02 (OCH₃), 50.42(CH), 17.68(CH₃). IR(NaCl cm⁻¹) 3423(NH), 3053(aromatic), 2926(CH₃), 1713(C=O), 1627(C-O).

6-Methoxy-2, 3-dihydro-2-hydroxy-3-methyl-2-(3',4'dimethoxyphenyl)-4-quinolone(4e) – Yield: 73%, mp 182°C. ¹H NMR(CDCl₃) δ 7.89(s, 1H, NH), 7.70(d, J=8.5 Hz, 1H, aromatic), 7.57(s, 1H), 7.48(d, J=9 Hz, 2H, aromatic), 6.93 (t, J=8.5 Hz, 1H, aromatic), 6.86(q, J=6.8 Hz, 2H, aromatic), 4.50(q, J=14.4 Hz, 1H, CH), 3.96(s, 6H, OCH₃×2), 3.79(s, 3H, OCH₃), 1.62(d, J=14.4 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 197.33(C=O), 164.19(C-O), 159.73(C-O), 154.79(C-O), 149.66 (C-O), 138.08, 136.01, 134.49, 129.73, 129.35, 129.09, 120.55 (aromatic), 56.60(OCH₃), 55.86(OCH₃), 50.44(CH), 17.70(CH₃). IR(NaCl cm⁻¹) 3425(NH), 3055(aromatic), 2927(CH₃), 1628(C-O).

7-Methoxy-2,3-dihydro-2-hydroxy-3-methyl-2-(3',4'dimethoxyphenyl)-4-quinolone(4f) – Yield: 78%, mp 171°C. ¹H NMR(CDCl₃) δ 7.91(s, 1H, NH), 7.68(d, *J*=8.2 Hz, 1H, aromatic), 7.54(s, 1H), 7.48(d, *J*=8.9 Hz, 2H, aromatic), 6.92 (t, J=8.3 Hz, 1H, aromatic), 6.83(q, J=6.8 Hz, 2H, aromatic), 4.43(q, J=14.2 Hz, 1H, CH), $3.98(s, 6H, OCH_3 \times 2)$, $3.80(s, 3H, OCH_3)$, 1.63(d, J=14.2 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 197.33(C=O), 164.19(C-O), 156.89(C-O), 154.79(C-O), 149.66 (C-O), 138.08, 136.01, 134.49, 129.73, 129.35, 129.09, 124.94, 120.55(aromatic), 56.60(OCH₃), 55.86(OCH₃), 50.44(CH), 17.70 (CH₃). IR(NaCl cm⁻¹) 3425(NH), 3055(aromatic), 2927(CH₃), 1628(C-O).

6-Acetoxy-2,3-dihydro-2-hydroxy-3-methyl-2-(3',4'dimethoxyphenyl)-4-quinolone(4g) – Yield: 92%, oil. ¹H NMR(CDCl₃) δ 7.95(s, 1H, NH), 7.87(s, 1H, aromatic), 7.84 (d, *J*=7.1 Hz, 2H, aromatic), 7.71(d, *J*=8.7 Hz, 2H, aromatic), 7.27(s, 1H, aromatic), 6.95(d, *J*=8.5 Hz, 1H, aromatic), 4.56 (q, *J*=14.5 Hz, 1H, CH), 3.96(s, 6H, OCH₃×2), 2.53(s, 3H, COCH₃), 1.62(d, *J*=14.5 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 200.27(C=O), 199.75(C=O) 168.89(C-O), 154.67(C-O), 149.38(C-O), 138.08, 136.01, 134.49, 129.73, 129.35, 129.09, 120.55(aromatic), 56.24(OCH₃), 56.12(OCH₃), 50.58(CH), 26.54(COCH₃) 17.58(CH₃). IR(NaCl cm⁻¹) 3447(NH), 3051 (aromatic), 2927(CH₃), 1628(C-O).

7-Acetoxy-2,3-dihydro-2-hydroxy-3-methyl-2-(3',4'**dimethoxyphenyl)-4-quinolone**(**4h**) – Yield: 86%, mp 159°C. ¹H NMR(CDCl₃) δ 7.92(s, 1H, NH), 7.87(s, 1H, aromatic), 7.81(d, *J*=6.9 Hz, 2H, aromatic), 7.69(d, *J*=8.5 Hz, 2H, aromatic), 7.24(s, 1H, aromatic), 6.91(d, *J*=8.5 Hz, 1H, aromatic), 4.55(q, *J*=14.2 Hz, 1H, CH), 3.95(s, 6H, OCH₃× 2), 2.54(s, 3H, COCH₃), 1.58(d, *J*=14.2 Hz, 3H, CH₃). ¹³C NMR(CDCl₃) δ 200.17(C=O), 199.80(C=O) 168.88(C-O), 154.64(C-O), 149.36(C-O), 138.10, 136.04, 134.42, 129.71, 129.32, 129.06, 124.89, 120.53(aromatic), 56.24(OCH₃), 56.10 (OCH₃), 50.58(CH), 26.54(COCH₃), 17.59(CH₃). IR(NaCl cm⁻¹) 3445(NH), 3048(aromatic), 2928(CH₃), 1627(C-O).

2,3-Dihydro-3,3-dimethyl-2-hydroxy-2-phenyl-4-quinolone (**5a**) – Yield: 56%, mp 59°C. ¹H NMR(CDCl₃) δ 7.89(s, 1H, NH), 7.86(s, 1H, aromatic), 7.55(s, 2H, aromatic), 7.46(m, 3H, aromatic), 7.30(m, 3H, aromatic), 7.11(t, *J*=6.9 Hz, 1H), 1.62(s, 6H, CH₃×2). ¹³C NMR(CDCl₃) δ 201.48(C=O), 171.74(C-O), 138.09, 135.70, 133.46, 129.58, 129.40, 129.33, 129.04, 125.12, 120.64(aromatic), 55.95(C), 24.79(CH₃×2). IR(NaCl cm⁻¹) 3433(NH), 3055(aromatic), 1628(C-O).

6-Acetoxy-2,3-dihydro-3,3-dimethyl-2-hydroxy-2-phenyl-4-quinolone(5b) – Yield: 15%, mp 131°C. ¹H NMR(CDCl₃) δ 8.01(s, 1H, NH), 7.86(m, 1H, aromatic), 7.66(m, 2H, aromatic), 7.47(m, 2H, aromatic), 7.36(m, 4H, aromatic), 2.55(s, 3H, COCH₃), 1.64(s, 6H, CH₃×2). ¹³C NMR(CDCl₃) δ 200.67(C=O), 196.97(C=O), 171.78(C-O), 142.14, 135.02, 134.32, 133.26, 133.05, 129.64, 129.00, 128.87, 128.69, 128.43, 119.38(aromatic), 55.76(C), 26.44(COCH₃), 24.35(CH₃×2). IR(NaCl cm⁻¹) 3405(NH), 3052(aromatic), 2958(CH₃), 2932 (CH₃), 1675(C-O).

7-Acetoxy-2,3-dihydro-3,3-dimethyl-2-hydroxy-2-phenyl-4-quinolone(5c) – Yield: 56%, mp 124°C. ¹H NMR(CDCl₃) δ 8.03(s, 1H, NH), 7.89(m, 2H, aromatic), 7.68(m, 2H, aromatic), 7.47(m, 2H, aromatic), 7.35(m, 3H, aromatic), 2.58(s, 3H, COCH₃), 1.65(s, 6H, CH₃×2). ¹³C NMR(CDCl₃) δ 200.84(C=O), 197.77(C=O), 171.70(C-O), 138.17, 137.79, 135.29, 133.13, 129.33, 128.85, 128.67, 124.66, 124.51, 119.69 (aromatic), 55.59(C), 26.65(COCH₃), 24.37(CH₃×2). IR(NaCl cm⁻¹) 3395(NH), 3042(aromatic), 2962(CH₃), 2928(CH₃), 1681(C-O).

실험결과 및 고찰

본 연구에서는 3-alkyl-2,3-dihydro-2-phenyl-4-quinolone 유도 체를 제조하기 위해서 앞서 보고한 2,3-dihydro-2-phenyl-4quinolone의 제조법을 응용하게 되었다.^{9a)}

Scheme 1에서 보는 바와 같이 quinolone핵 **3a-h**을 one-pot reaction으로 합성하였다(수득율 23~71%). 이 반응은 acidcatalyzed condensation과 dealcoholation으로 되어있으며, 상업 적으로 이용 가능한 anilines, anisidines, aminoacetophenones이 출발물질로 사용되었다. 관련 ethyl benzoylacetate(or ethyl 3,4dimethoxy benzoylacetate)는 *p*-toluenesulfonic acid(*p*-TSA)와 반응하여 protonation을 일으키고, dehydration으로 축합되어 C-N 결합이 생성된다. 이 반응은 중단되지 않고 그대로 intramolecular dealcoholation되어 quinolone 고리를 완성하게 된 다. 이 반응에서 중간체인 β-ketoester **2a-h**는 반응종료 후에도 계속 남아 있게 되므로 다음 단계의 합성을 위해서는 4-quinolone **3a-h**만을 분리해야 한다. 앞선 보고에서^{9a)} 일부 2-hydroxy-4quinolone 유도체 및 β-ketoester 유도체의 합성방법과 분석 data 를 제시하였으므로 이곳에서는 생략하였다.

Methylation을 위해서 methyl iodide를 quinolone **3a-h**와 함 께 acetone 용매 중에서 실온에서 9~60시간 동안 반응시켰다. 이 alkylation 반응은 보통 가압 반응에서 진행하기도 하는데 본 실험에서는 실온에서 반응용기의 뚜껑을 고무마개로 가능한 기 밀하게 막아서 진행시켜 성공하였다. 그러나 이 반응은 ethyl benzoylacetates의 종류에 따라 반응속도와 수득율이 다르므로 알킬화제의 사용비율과 반응시간 등을 조절해야 했다(Table I).

5a-c를 효율적으로 제조하기 위해 Scheme 1에서와 같이 두 가지 경로를 비교하였다. A방법은 C-monomethylation을 단계적 으로 두 번 반복시키는 것인데 즉, **4a-h**를 분리 한 다음 다시 methylation하여 **5a-c**를 만드는 것이다. B 방법은 한꺼번에 Cdimethylation 한 경우인데, 즉, **3a-h**에서 곧바로 **5a-c**를 생성시 키는 것이다. A와 B방법을 비교하면 반응에 참여하는 methyl iodide의 양이 B방법의 경우가 A방법보다 4~5배가량 더 소비되 었고, 반응시간 또한 3~4배가량이 길어졌다. 수득율 또한 A방 법보다 높지 않았기 때문에 monoalkylation를 반복하여 실험을 진행하는 A방법이 더 효율적이라 할 수 있다.

Proton-NMR에서 monoalkylation 된 4a-h의 경우 alkylation

Scheme 1 - Synthetic route of 3-methyl (or 3,3-dimethyl)-2-phenyl-4-quinolones 4a-h and 5a-c.

No.	R_1	R_2	R ₃	R_4	Molar Ratio ^a Reag./Subs.	Reaction time (hr)	MP (°C)	Yield (%)
4a	Н	Н	Н	Н	2	3	135	81
4b	CH ₃ CO	Н	Η	Н	2	3	139	73
4c	Ĥ	CH ₃ CO	Η	Н	2	5	135	68
4d	Η	Ĥ	OCH_3	OCH_3	2	9	oil	92
4e	OCH_3	Н	OCH_3	OCH_3	2	24	182	73
4f	Η	OCH_3	OCH_3	OCH_3	2	20	171	78
4g	CH ₃ CO	Н	OCH_3	OCH_3	2	16	oil	92
4h	Η	CH ₃ CO	OCH_3	OCH_3	2	16	159	86
5a	Η	Н	Η	Н	4	18	59	56
5b	CH ₃ CO	Н	Η	Η	2	7	131	15
5c	Ĥ	CH ₃ CO	Η	Н	2	7	124	56

Table I – Optimal conditions for target compounds (4a-h and 5a-c)

^aReag./Subs. is the ratio of methyl iodide to substrate (quinolone 3a-h and 4a-c)

이전의 CH₂(4.05~4.28 ppm)가 CH(4.43~4.56 ppm)로 변화되었 음을 확인할 수 있었고, 새로 도입된 CH₃ peak는 보통 1.58~ 1.67 ppm 영역에서 확인하였다. Dialkylation **5a-c**에서는 CH peak가 사라지고 두개의 methyl기가 1.62~1.65 ppm 영역에서 출현하였음을 확인하였다. 두 개의 methyl기는 동일한 자기적 환 경에 놓여있어 NMR spectra에서 한 개의 peak로 나타난다.

Carbon-NMR에서 **4a-h**에 새롭게 도입된 methyl기의 peak는 17.29~17.68 ppm, **5a-c**에 새롭게 도입된 methyl기의 peak는 24.35~24.79 ppm 영역에서 나타났다. 이와 같이 **5a-c**의 methyl carbon은 7 ppm 정도 down shift된 영역에서 출현하여 두드러진 차이를 보였다. 또한, **5a-c**의 경우 2,3-dihydro-2-phenyl-4quinolone **3a-h**에서 45.20~46.25 ppm에서 나타나던 CH₂ peak 가 완전히 사라졌다. **4a-h**의 경우 methylation된 CH peak가 49.87~50.58 ppm에서 나타나 **3a-h**의 CH₂ peak가 5 ppm가량 shift 하였음을 확인하였다.

Quinolone **3a-h**에 대한 첫 번째 methylation 반응은 수득율이 69~92%였고, 두 번째 methylation 수득율은 15~56%였다. 이 는 첫 번째와 두 번째 methyl 도입반응이 다른 환경이었다는 것 을 입증하는 것이다. 두 번째 methylation 반응에서 수득율이 낮 아진 것은 반응진행이 더 어려웠다는 것인데, 이는 두가지로 생 각해 볼 수 있을 것이다. 하나는 이미 도입된 methyl기로 인해 3-위치의 nucleophilicity가 더 낮아졌다는 것이고, 다른 하나는 이미 도입된 methyl기로 인하여 steric hindrance의 영향을 받았 다는 것이다. 즉, 2-위치의 탄소에 hydroxy 및 phenyl기가 이미 치환되어있는 데다가 이미 3-위치 탄소에 methyl기가 도입되어 공간적 여유가 훨씬 감소되었기 때문이다.

본 연구의 methyl화 반응에서 *N*-methylated quinolone은 생 성되지 않았다. 이는 quinolone 고리의 NH-위치보다는 3-위치 탄소가 더 nucleophilic reaction을 잘 수행하고 있다는 것이다. 1-위치와 3-위치의 protonation에 차이가 있으며, α-위 carbonyl 기의 영향으로 3-위치의 protonation이 더 용이하지만, 1-위치는 옆의 2-위치에 hydroxy, phenyl기의 치환으로 protonation이 어 려운 상황으로 보인다. 즉, 이 구조에서는 N-alkylation보다 Calkylation이 잘 일어나며, NH 위치의 alkyl도입을 위해서는 다 른 합성방법이 필요하다.

결 론

본 연구에서는 잠재적 항암효과를 기대하는 후보물질을 개발 하기 위해서 유기합성의 방법으로 새로운 화합물들을 탐색하였 다. Toluene 용매 하에 aniline계열(anilines, anisidines, aminoacetophenones)의 물질, *p*-TSA, ethyl benzoylacetates, (또는 ethyl 3,4-dimethoxybenzoylacetate)를 가하여 acid-catalyzed condensation, dehydration, dealcoholation, hydration을 거쳐 **3a-h**을 합성하였다. Acetone 용매 하에 **3a-h**에 K₂CO₃와 methyl iodide를 가하고 실온에서 교반하여 새로운 3-methyl-2-phenyl-4-quinolones **4a-h**을 합성하였다. 다시 acetone 용매 하에서 **4a**h에 K₂CO₃와 methyl iodide를 가하여 실온에서 교반시켜 3,3dimethyl 화된 새로운 3,3-dimethyl-2-phenyl-4-quinolones **5a-c** 을 합성하였다.

감사의 말씀

이 논문은 덕성여자대학교 2007년도 교내연구비에 의하여 연 구되었습니다. 이에 덕성여자대학교에 감사하는 바입니다.

참고문헌

- Seo, H. J. and Surh, Y. J. : Eupatilin, a pharmacologically active flavone derived from *artemisia* plants, induces apoptosis in human promyelocytic leukemia cells. *Mutation Rearch* 496, 191 (2001).
- Bauvois, B., Puiffe, M. L., Bongui, J. B., Pailat, S., Monneret, C. and Dauzonne, D. : Synthesis and biological evaluation of novel flavone-8-acetic acid derivatives as reversible inhibitors

of aminopeptidase N/CD13. J. Med. Chem. 46, 3900 (2003).

- 3) Gobbi, S., Rampa, A., Bisi, A., Belluti, F., Piazzi, L., Valenti, P., Caputo, A., Zampiron, A. and Carrara, M. : Synthesis and biological evaluation of 3-alkoxy-analogues of flavone-8-acetic acid. J. Med. Chem. 46, 3662 (2003).
- Li, L., Wang, H. K., Kuo, S. C., Wo, T. S., Lednicer, D., Lin, C. M., Hamel, E. and Lee, K. H. : Antitumor agents. 150. 2',3',4',5',5,6,7-substituted 2-phenyl-4-quinolones and related compounds: their synthesis, cytotoxicity, and inhibition of tubulin polymerization. *J. Med. Chem.* 37, 1126 (1994).
- Li, L., Wang, H. K., Kuo, S. C., Wu, T. S., Mauger, A., Lin, C. M., Hamel, E. and Lee, K. H. : Antitumor agents. 155. Synthesis and biological evaluation of 3',6,7-substituted 2phenyl-4-quinolones as antimicrotubule agents. *J. Med. Chem.* 37, 3400 (1994).
- 6) Kuo, S. C., Lee, H. Z., Juang, J. P., Lin, Y. T., Wu, T. S., Chang, J. J., Lednicer, D., Paull, K. D., Lin, C. M., Hamel, E. and Lee, K. H. : Synthesis and cytotoxicity of 1,6,7,8-substituted 2-(4'-substituted phenyl)-4-quinolones and related compounds: Identification as antimitotic agents interacting with tubulin. J.

Med. Chem. 36, 1146 (1993).

- Watterson, S. H., Carlsen, M., Dhar, T. G. M., Shen, Z., Pitts, W. J., Gu, H. H., Norris, D., Chorba, J., Chen, P., Cheny, D., Witmer, M., Fleener, C. A., Rouleau, K., Townsend, R., Hollenbaugh, D. L. and Iwanowicz, E. J. : Novel inhibitors of IMPDH: a highly potent and selective quinolone-based series. *Bioorganic & Medicinal Chemistry Letters* 13, 543 (2003).
- 8) Xia, Y., Yang, Z. Y., Xia, P., Bastow, K. F., Nakanishi, P. N., Hamel, E., Brossi, A. and Lee, K. H. : Antitumor agents. Part 226: Synthesis and cytotoxicity of 2-phenyl-4-quinolone acetic acids and their esters. *Bioorganic & Medicinal Chemistry Letters* 13, 2891 (2003).
- Park, M. S. and Lee, J. I. : Synthesis of new 2,3-dihydro-2phenyl-4-quinolone derivatives; aza analogs of flavanone. *Bull. Korean Chem. Soc.* 25, 1269 (2004). (b) Park, M. S. : Synthesis of asymmetric dmer of qinolone drivatives using *p*-TSA. *Yakhak Hoeji* 48(3), 202 (2004). c) Kim, J. H. and Park, M. S. : Synthesis of novel 2,3-dihydro-2-phenylquinolone dimers uing β-ketoester and *N*-alkylamine. *Bull. Korean Chem. Soc.* 27(8), 1249 (2006).