DOI QR코드

DOI QR Code

Grafting of MMA onto MCC through free radical method and its application to all natural cellulose composite film preparation

Microcrystalline cellulose에 자유 라디칼을 이용한 methyl methacrylate의 그래프팅 반응과 이를 이용한 천연복합필름의 제조

  • Lee, Soo (Dept. of Chemical Engineering, Changwon National University) ;
  • Park, Sang-Hee (Dept. of Chemical Engineering, Changwon National University) ;
  • Jin, Seok-Hwan (Dept. of Chemical Engineering, Changwon National University) ;
  • Lee, Sun-Young (Dept. of Environmental Material Engineering, Korea Forest Research Institute)
  • 이수 (국립창원대학교 화공시스템공학과) ;
  • 박상희 (국립창원대학교 화공시스템공학과) ;
  • 진석환 (국립창원대학교 화공시스템공학과) ;
  • 이선영 (국립산림과학원 환경소재공학과)
  • Published : 2008.12.31

Abstract

Methyl methacrylate(MMA) was grafted onto microcrystalline cellulose(MCC) with ceric ammonium nitrate(CAN) as a redox initiator at the various conditions. The cellulose triacetate(CTA) composite films added MCC and MMA-grafted MCC powders were prepared on a glass plate. The graft yield(GY) and graft efficiency(GE) of the grafted MCC were calculated with the simple equations by the weight balance method. The double bond of C=O on the grafted MCC surfaces was confirmed by the fourier transform infrared spectroscopy with attenuated total reflection(FT-IT ATR) spectrophotometer. After grafting, the degree of crystallinity of cellulose powders was decresed by judging from x-ray diffraction(XRD) data. Scanning electron microscope(SEM) photos showed the only solvent and CAN solution could change the roughness of MCC powders and the effect of powder dispersions in composite matrix. The tensile strength of MCC/CTA composite films was decreased with increase of MCC powder contents. When 5% grafted MCC was added, the tensile strength of grafted MCC/CTA composite films was increased from 82.3 MPa to 97.2 MPa. The thermal property of powders was also analyzed by the thermogravimetric analysis(TGA).

Keywords

References

  1. A. P. Mathew, K. Oksman, and M. Sain, Mechanical properties of biodegradable composites from poly lactic acid(PLA) and microcrystalline cellulose(MCC), J. Appl. Polym. Sci., 97, 2014 (2005) https://doi.org/10.1002/app.21779
  2. J. P. Borges, M. H. Godinho, and A. F. Martins, Tensile properties of cellulose fiber reinforced hydroxypropylcellulose films, Polym. Compos., 25, 102 (2004) https://doi.org/10.1002/pc.20008
  3. S. Edge, D. F. Steele, A. Chen, M. J. Tobyn, and J. H. Staniforth, The mechanical properties of compacts of microcrystalline cellulose and silicified microcrystalline cellulose, J. Pharmac., 200, 67 (2000)
  4. X. Ma, P. R. Chang, and J. Yu, Properties of biodegradable thermoplastic pea starch/carboxymethyl cellulose and pea starch/microcrystalline cellulose composites, Carbohyd. Polym., 72, 369 (2008) https://doi.org/10.1016/j.carbpol.2007.09.002
  5. K. H. Guruprasad, and G. M. Shashidhara, Grafting, blending, and biodegradability and cellulose acetate, J. Appl. Polym. Sci., 91, 1716 (2004) https://doi.org/10.1002/app.13386
  6. P. F. Remp and P. J. Lutz, In Comprehensive Polymer Science, G. D. Eastmond, A. Redwith, R. Russo, and P. Sigwalt Eds, Vol. 6, Chap. 12, Pergamon press, Oxford, England(1989)
  7. K. Tanaka, T. Igarashi, and T. Sakurai, Radical copolymerization of diarylnitrone derivatives having a polymerizable group with methyl methacrylate, Macromolecules, 37, 5482 (2004) https://doi.org/10.1021/ma0494784
  8. R. Kh. Yumagulova, S. V. Kolesov, and Y. B. Monakov, Radical copolymerization of methyl methacrylate and styrene in the presence of metallocenes, Russ. J. Appl. Chem., 78, 291 (2005) https://doi.org/10.1007/s11167-005-0277-0
  9. P. Ghosh, S. Biswa, and C. Datta, Modification of jute fibre through vinyl grafting aimed at improved rot resistance and dyeability, J. Mater. Sci., 24, 205 (1989) https://doi.org/10.1007/BF00660955
  10. H. F. Naguib, Chemically induced graft copolymerization of itaconic acid onto sisal fibers, J. Polym. Resear., 9, 207 (2002) https://doi.org/10.1023/A:1021399826969
  11. T. M. Don, Y. R. Chen, and W. Y. Chiu, The synthesis of chitin-g-Poly(vinyl acetate) copolymers with a redox initiator, J. Polym. Resear., 9, 257 (2002) https://doi.org/10.1023/A:1021312020224
  12. F. E. Okieimen, and D. E. Ogbeifun, Graft copolymerization of modified cellulose, grafting of acrylonitrile, and methyl methacrylate on carboxy methyl cellulose, J. Appl. Polym. Sci., 59, 981 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960207)59:6<981::AID-APP11>3.0.CO;2-Q
  13. J. M. Joshi, and V. K. Sinha, Ceric ammonium nitrate induced grafting of polyacrylamide onto carboxymethyl chitosan, Carbohyd. Polym., 67, 427 (2007) https://doi.org/10.1016/j.carbpol.2006.06.021
  14. G. Gurdag, G. Guclu, and S. Ozgumus, Graft copolymerization of acrylic acid onto cellulose: Effects of pretreatments and crosslinking agent, J. Appl. Polym. Sci., 80, 2267 (2001) https://doi.org/10.1002/app.1331
  15. M. Pulat, and C. Isakoco, Chemically induced graft copolymerization of vinyl monomers onto cotton fibers, J. Appl. Polym. Sci., 100, 2343 (2006) https://doi.org/10.1002/app.23060
  16. M. I. H. Mondal, and M. M. Hoque, Effect of grafting methacrylate monomers onto jute constituents with a potassium persulfate initiator catalyzed by Fe(II), J. Appl. Polym. Sci., 103, 2369 (2007) https://doi.org/10.1002/app.25276
  17. C. N. Saikia, and F. Ali, Graft copolymerization of methylmethacrylate onto high ${\alpha}$-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea, Bioresour. Technol., 68, 165 (1999) https://doi.org/10.1016/S0960-8524(98)00138-2
  18. P. Ghosh, D. Dev, and A. K. Samanta, Graft copolymerization of acrylamide on cotton cellulose in a limited aqueous system following pretreatment technique, J. Appl. Polym. Sci., 58, 1727 (1995) https://doi.org/10.1002/app.1995.070581010
  19. K. C. Gupta, and S. sahoo, Graft copolymerization of acrylonitrile and ethyl methacrylate comonomers on cellulose using ceric ions, Biomacromolecules, 2, 239 (2001) https://doi.org/10.1021/bm000102h
  20. M. I. H. Mondal, Y. Uraki, M. Ubukata, and K. Itoyama, Graft polymerization of vinyl monomers onto cotton fibres pretreated with amines, Cellulose, 15, 581 (2008) https://doi.org/10.1007/s10570-008-9210-z
  21. H. S. Bae, A study on the graft polymerization onto cellulose fiber using tetravalent cerium, Kor. Hom. Econom. Associa., 30, 1 (1992)
  22. B. Sikdar, R. K. Basak, and B. C. Mitra, Studies on graft copolymerization of acrylonitrile onto jute fiber with permanganate ion initiation system in presence of air, 55, 1673 (1995) https://doi.org/10.1002/app.1995.070551207
  23. P. Zugenmaier, 'Crystalline cellulose and derivatives: Characterization and structures', Chap. 5, Springer series in wood science, Germany(2008)
  24. P. Zugenmaier, 'Crystalline cellulose and derivatives: Characterization and structures', Chap. 6, Springer series in wood science, Germany(2008)