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SOME RESULTS OF R-GROUP STRUCTURES
YonGg Uk CHO

ABSTRACT. In this paper, we initiate a study of faithful R-group G
and some substructures of R and G. Next, we investigate a faithful
representation of near-ring R and some properties of monogenic R-
groups.

1. Introduction

A (left) near-ring R is an algebraic system (R, +, -) with two binary
operations, say + and - such that (R,+) is a group (not necessarily
abelian) with neutral element 0, (R, -) is a semigroup and a(b + ¢) =
ab+ ac for all a,b,c in R. If R has a unity 1, then R is called unitary.
An element d in R is called distributive if (a + b)d = ad + bd for all a
and b in R.

An ideal of R is a subset I of R such that (i) (I, +) is a normal
subgroup of (R, +), (ii) a(l +b) —ab C I for all a, b € R, (iii)
(I +a)b—ab C I for all a, b € R. If I satisfies (i) and (ii) then it is
called a left ideal of R. If I satisfies (i) and (iii) then it is called a right
ideal of R.

On the other hand, an R-subgroup of R is a subset H of R such that
(i) (H, +) is a subgroup of (R, +), (ii) RH C H and (iii) HR C H.
If H satisfies (i) and (ii) then it is called a left R-subgroup of R. If H
satisfies (i) and (iii) then it is called a right R-subgroup of R. In case,
(H, +) is normal in above, we say that normal R-subgroup, normal
left R-subgroup and mormal right R-subgroup instead of R-subgroup,
left R-subgroup and right R-subgroup, respectively.

We consider the following notations: Given a near-ring R, Ry = {a €
R | 0a = 0} is called the zero symmetric part of R, R. = {a € R | 0a =
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a} is called the constant partof R, and Ry = {a € R | a is distributive}
is called the distributive part of R.

We note that Ry and R. are subnear-rings of R, but R, is not a
subnear-ring of R. A near-ring R with the extra axiom Oa = 0 for
all a € R, that is, R = Ry is said to be zero symmetric, also, in case
R = R., R is called a constant near-ring, and in case R = Ry, R is
called a distributive near-ring.

Let (G,+) be a group (not necessarily abelian). In the set

M@G)={f|f:G—G}

of all the self maps of G, if we define the sum f+ g of any two mappings
f,g in M(G) by the rule z(f + g) = zf + xg for all x € G and the
product f-g by the rule z(f-g) = (zf)g for all x € G, then (M(G), 4+, -)
becomes a near-ring. It is called the self map near-ring of the group
G. Also, if we define the set

Mo(G) = {f € M(G) | 0f = 0},

then (My(G),+,-) is a zero symmetric near-ring.

Let R and S be two near-rings. Then a mapping 6 from R to
S is called a near-ring homomorphism if (i) (a + b)0 = af + b0, (ii)
(ab)f = afblh. We can replace homomorphism by momomorphism, epi-
morphism, isomorphism, endomorphism and automorphism, if these
terms have their usual meanings as for ring theory([1]).

Let R be any near-ring and G an additive group. Then G is called
an R-group if there exists a near-ring homomorphism

0:(R,+,) — (M(G),+,-).

Such a homomorphism 6 is called a representation of R on G, we write
that xr (right scalar multiplication in R) for z(rf) for all z € G and
r € R. If R is unitary, then R-group G is called unitary. Thus an
R-group is an additive group G satisfying (i) z(a + b) = xa + zb, (ii)
z(ab) = (xa)b and (iii) 21 = « ( If R has a unity 1 ), for all x € G
and a, b € R. Evidently, every near-ring R can be given the structure
of an R-group (unitary if R is unitary) by right multiplication in R.
Moreover, every group G has a natural M (G)-group structure, from
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the representation of M(G) on G given by applying the f € M(G) to
the x € G as a scalar multiplication z f.

A representation 6 of R on G is called faithful if Kerf = {0}. In
this case, we say that G is called a faithful R-group.

For an R-group G, a subgroup T of GG such that TR C T is called
an R-subgroup of GG, a normal subgroup N of G such that NR C N
is called a mormal R-subgroup of G and an R-ideal of G is a normal
subgroup N of G such that (N + x)a —za C N for all z € G, a € R.
Also, note that normal R-subgroups of GG are not equivalent to an
R-ideals of R.

Let R be a near-ring and let G be an R-group. If there exists z in
G such that G = xR, that is, G = {zr | r € R}, then G is called a
monogenic R-group and the element x is called a generator of G, more
specially, if G is monogenic and for each x € G, tR =0 or zR = G,
then G is called a strongly monogenic R-group. It is clearly proved that
G # 0 if and only if GR # 0 for any monogenic or strongly monogenic
R-group G. For the remainder concepts and results on near-rings, we
refer to [6].

2. Some Properties of monogenic R-Groups

A near-ring R is called distributively generated (briefly, d.g.) if it
contains a subsemigroup S of (Ry, -) which generates the additive group
(R, +), we denote it by (R, S).

On the other hand, the set of all distributive elements of M (G) are
obviously the semigroup End(G) of all endomorphisms of the group G
under composition. Here we denote that E(G) is the d.g. near-ring gen-
erated by End(G), that is, F(G) is d.g. subnear-ring of (My(G),+,-)
generated by End(G). It is said to be that E(G) is the endomorphism
near-ring of the group G.

Let (R,S) and (7,U) be d.g. near-rings. Then a near-ring homo-
morphism

0:(R,S) — (T,U)

is called a d.g. near-ring homomorphism if SO C U. Note that a semi-
group homomorphism 6 : S — U is a d.g. near-ring homomorphism
if it is a group homomorphism from (R, +) to (T,+) (C.G. Lyons and
J.D.P. Meldrum [3], [4]).
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ExXAMPLE 2.1. If R is a distributive near-ring with unity 1, then R
is a ring. Furthermore, if R is a distributive near-ring with unity 1,
then every (R, R)-group is a unitary R-module.

Proof. Let G be an (R, R)-group. Since G is unitary, z(1+1) = z+z,
for all x € G. Thus we have that

c4+y+r+y=@+y)Ql+1)=2z0+)+y(l+1)=z+z+y-+uy,

for all x,y € G. This implies that (G, +) is abelian. Since R = S, the
set of all distributive elements, (x + y)r = zr 4+ yr, for all z,y € G and
all r € R. Hence G becomes a unitary R-module. 0

LEMMA 2.2 ([5]). Let (R,S) be a d.g. near-ring. Then all R-
subgroups and all R-homomorphic images of a (R, S)-group are also
(R, S)-groups.

Now, we consider that the substructures of R and G, also quotients
of substructure relations between them.
Let G be an R-group and K, K; and K5 be subsets of GG. Define

(K1 : KQ) = {CL S R; Ksa C Kl}
We abbreviate that for x € G
({z}: K3) =: (x : K>).

Similarly for (K7 : x). (0: K) is called the annihilator of K, denoted
it by A(K). We say that G is a faithful R-group or that R acts faithfully
on G if A(G) = {0}, that is, (0: G) = {0}.

A subgroup H of G such that za € H for all x € H,a € R, is an
R-subgroup of G, and an R-ideal of G is a normal subgroup N of G
such that

(r+g)a—gae N

for all g € G,z € N and a € R (J.D.P. Meldrum [6]).

LEMMA 2.3. Let G be an R-group and K; and K5 subsets of G.
Then

(1) If Ky is a normal R-subgroup of G, then (K : K3) is a normal
right R- subgroup of the near-ring R.
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(2) If Ky is an R-subgroup of G, then (K; : Ks) is a right R-
subgroup.

(3) If Ky is an R-ideal of G and K5 is an R-subgroup of G, then
(K; : K3) is a two-sided ideal of R.

Proof. (1) and (2) are proved by J.D.P. Meldrum [6]. Now, we
will prove only (3) : Using the condition (1), (K; : K2) is a normal
subgroup of R. Let a € (K; : K3) and r € R. Then

Ks(ra) = (Kar)a C Ksa C Kj,

so that ra € (K : K3). Whence (K : K3) is a left ideal of R.
Next, let 71,79 € R and a € (K7 : K3). Then

k{(a 4+ r1)re —rire} = (ka + kry)re — krirg € Ky

for all k € Ko, since Ksa C K; and K is an ideal of G. Thus (K7 : K3)
is a right ideal of R. Therefore (K; : K2) is a two-sided ideal of R. [J

COROLLARY 2.4 ([6]). Let R be a near-ring and G an R-group.
Then

(1) For any z € G, (0: x) is a right ideal of R.
(2) For any R-subgroup K of G, (0 : K) is a two-sided ideal of R.
(3) For any subset K of G, (0: K) = (,cx(0: x).

PROPOSITION 2.5. Let R be a near-ring and G an R-group. Then

(1) A(G) is a two-sided ideal of R. Moreover G is a faithful R/A(G)-
group.
(2) For any z € G, we get tR = R/(0 : x) as R-groups.

Proof. (1) By Corollary 2.4 and Lemma 2.3, A(G) is a two-sided
ideal of R. We now make G an R/A(G)-group by defining, for r €
R,r + A(G) € R/A(G), the action z(r + A(G)) = zr. If r + A(G) =
r" + A(G), then —r’ +r € A(G) hence z(—r' 4+ r) = 0 for all z in G,
that is to say, xr = xr’. This tells us that

z(r+ AG)) = ar = or' = 2(r' + A(G));
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thus the action of R/A(G) on G has been shown to be well defined. The
verification of the structure of an R/A(G)-group is a routine triviality.
Finally, to see that G is a faithful R/A(G)-group, we note that if x(r +
A(G)) = 0 for all x € G, then by the definition of R/A(G)-group
structure, we have zr = 0. Hence r € A(G). This says that only the
zero element of R/A(G) annihilates all of G. Thus G is a faithful
R/A(G)-group.

(2) For any = € G, clearly zR is an R-subgroup of G. The map ¢ :
R — zR defined by ¢(r) = xr is an R-ephimorphism, so that from
the isomorphism theorem, since the kernel of ¢ is (0 : x), we deduce
that

tR=R/(0: x)

as R-groups. O

COROLLARY 2.6. Let G be a monogenic R-group with x as a gen-
erator. Then we have the following isomorphic relation.

G=R/(0:z).

ProprosiTiON 2.7. If R is a near-ring and G an R-group, then
R/A(G) is isomorphic to a subnear-ring of M(G).

Proof. Let a € R. We define 7, : G — G by x7, = za for each
x € G. Then 7, is in M(G). Consider the mapping ¢ : R — M(G)
defined by ¢(a) = 7,. Then obviously, we see that

¢(a+b) = ¢(a) + ¢(b) and ¢(ab) = ¢(a)¢(b),

that is, ¢ is a near-ring homomorphism from R to M(G).

Next, we must show that Ker¢ = A(G). Indeed, if a € Kerg, then
Ta = 0, which implies that Ga = G1, = 0, that is, a € A(G). On
the other hand, if a € A(G), then by the definition of A(G), Ga = 0
hence 0 = 7, = ¢(a), this implies that a € Ker¢. Therefore from the
first isomorphism theorem on R— groups, the image of R is a near-
ring isomorphic to R/A(G). Consequently, R/A(G) is isomorphic to a
subnear-ring of M(G). O

Thus we can obtain the following important statement as in ring
theory.
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COROLLARY 2.8. If G is a faithful R-group, then R is embedded in
M(G).

COROLLARY 2.9. If(R,S) is a d.g. near-ring, then every monogenic
R-group is an (R, S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then

the map ¢ : r — xr is an R-epimorphism from R to G as R-groups.
We see that by the Corollary 2.6,

G = R/A(x),

where A(z) = (0 : ) = Ker¢. From the Lemma 2.2, we see that G is
an (R, S)-group. O

Now, we get the following useful results of monogenic R-groups to
make primitive near-rings.

PropPoOsSITION 2.10. Let G be a monogenic R-group with generator
x. Then

(1) For any right ideal I of R, xI is an R-ideal of G.

(2) If I is a left R-subgroup of R and zI is an R-ideal of G, then
I is an ideal of R.

(3) If e is a right identity of R and if G is a faithful R-group, then
e is a two-sided identity of R.

Proof. (1) Let a € G. Then there exists t € R such that a = xt.
Thus for each zy € zI,r € R, and a € G,

(a 4+ zy)r — ar = (zt + zy)r — (xt)r = z(t + y)r — x(tr)

=x{(t+y)r—tr} €zl

By using similar method, it can be easily shown that xI is an additive
normal subgroup of G. Therefore xI is an R-ideal of G.
(2) For any y € I and a, b € R, we obtain the following equality:

x{(y +a)b—ab} = z(y + a)b — z(ab) = (xy + xa)b — (za)b) € xI
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Hence (y+a)b—ab € xI. Similarly, we can show that I is an additive
normal subgroup of R. Consequently, I is an ideal of R.
(3) First, let e be a right identity of R and g = =t be any element in
G. Then we have the relation that

ge = (zt)e =x(te) =at =g
Next, let r be any element of R and g be an arbitrary element in G.
Then one gets the following equality that
gler —r) = gler) +g(=r) = (ge)r —gr = gr —gr =0

Thus (er —r) € (0: G) = A(G).
Since G is faithful, it implies that er —r = 0, that is, er = r. Hence
e is a two-sided identity of R. O

We note that, in the above Proposition 2.10 (2), if R satisfies DCCN
and G satisfies DCCI, then R satisfies DCCI.

LEMMA 2.11 (WIELANDT AND BETSCH [2]). If R is a zero sym-
metric near-ring and A, B, K are R-ideals of an R-group G, then

(1) We get an additive abelian group:

G =[(A+K)n(B+K)|/[(AnB) + K|

and for any x, y € G', and r € R, we have (z + y)r = xr + yr.
(2) We obtain a quotient ring R/(0 : G’).

PROPOSITION 2.12. Let G be a faithful monogenic R-group with
generator x, where R is a zero symmetric near-ring. If I and J are
right ideals of R and I NJ C (0: z), then R is a ring.

Proof. From the Proposition 2.5 (2), we have that

G=zR2R/(0:2)=[IT+0:2)NJ+(0:2)]/[INT)+(0:z)] =G

On the other hand, since G is faithful, by the definition, we see that
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0:GNY=2(0:G)=A(G)=0
Consequently, Lemma 2.11 implies that R is a ring. 0

For an R-group G, we have the following:
F or any z in G, xR is an R-subgroup of G.
F or any R-subgroup A of GG, we have that OR = 0R. C A, where 0 is
the additive identity of G.
OR is the smallest R-subgroup of G under all R-subgroups of GG, So
throughout this paper, we will write that

OR=0R. =: Q.
We note that if R is zero symmetric, then €2 = 0, and Q2 = z R, for
all z € G.
Also, we can define the following concepts: An R-group G is called
simple if G has no non-trivial ideal, that is, G has no ideals except o
and G. Similarly, we can define simple near-ring as in the case of ring.

Also, R-group G is called R-simple if G has no R-subgroups except €2
and G.

LEMMA 2.13. For an R-group G and a subgroup A of G, we have
the following:

(1) A is an R-ideal of G if and only if A is an Ry-ideal of G.
(2) A is an R-subgroup of G if and only if A is an Ry-subgroup of
G and Q) C A.

Proof. (1) Obviously, an R-ideal of G is an Rp-ideal of G. Con-
versely, suppose A is an Rp-ideal of G. Let a € A, x € G and r € R.
Then since R = Ry & R., we rewrite that r = s + ¢, where s € Ry and
t € R.. Thus we have

(a+x)r—ozr=(a+x)(s+t)—z(s+t)=(a+x)s+ (a+z)t —xt —xs
Here, since t € R, (a+x)t-xt=t-t=0 so that (a + z)r — zr = (a +

x)s—xs. Alsosince s € Ry and A is an Ryp-ideal of G, (a+x)s—zs € A,

that is (a + z)r — xr € A. Consequently, A is an R-ideal of G.

(2) The statement (2) can be proved by using similar method of the

proof of case (1). O
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THEOREM 2.14. Let G be a monogenic R-group with generator x.
Then we have the following:

(1) If I is a left R-subgroup of R and zI is an R-ideal of G, then
(zI : x) is an ideal of R.

(2) If G is Ry-simple, then either GR = 0 or G is strongly mono-
genic.

Proof. (1) For any y € I and a, b € R, we obtain the following
equality:

x{(y+a)b—ab} = z(y + a)b — z(ab) = (xy + za)b — (za)b) € xI

Hence (y + a)b — ab € (zI : x). In this way, we can show that (z/ : x)
is an additive normal subgroup of R. Consequently, (zI : x) is an ideal
of R.

(2) Suppose that G is Rg-simple and G = GR # 0 (See the note below
the definition of monogenic R-group). Then G has no R-subgroups
except 2 =0 and G. Let x € G and xR # 0. Then since xR is an R-
subgroup, moreover an Ryp-subgroup by Lemma 2.13 (2) of G, G = zR.
Hence G is strongly monogenic. OJ
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