REPULSIVE FIXED-POINTS OF THE LAGUERRE-LIKE ITERATION FUNCTIONS

YoonMee Ham and Sang-Gu Lee*

Abstract

Let f be an analytic function with a simple zero in the reals or the complex numbers. An extraneous fixed-point of an iteration function is a fixed-point different from a zero of f. We prove that all extraneous fixed-points of Laguerre-like iteration functions and general Laguerre-like functions are repulsive.

1. Introduction

Suppose that $f(z)$ is analytic with a simple zero at α in either the reals or the complex numbers. Let $L_{0}(z)=1$ and

$$
L_{m}(z)=\operatorname{det}\left(\begin{array}{ccccc}
f^{\prime}(z) & f(z) & 0 & \ldots & 0 \tag{1.1}\\
f^{\prime \prime}(z) & f^{\prime}(z) & f(z) & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \\
\frac{f^{(m-1)}(z)}{(m-2)!} & \frac{f^{(m-2)}(z)}{(m-2)!} & \frac{f^{(m-3)}(z)}{(m-3)!} & \ldots & f(z) \\
\frac{f^{(m)}(z)}{(m-1)!} & \frac{f^{(m-1)}(z)}{(m-1)!} & \frac{f^{(m-2)}(z)}{(m-2)!} & \ldots & f^{\prime}(z)
\end{array}\right),
$$

where $\operatorname{det}(\cdot)$ denotes the determinant. $L_{m}(z)$ is the determinant of a Toeplitz-like matrix (see $[1,6]$). For each $m \geq 2$, recursively define

$$
\begin{equation*}
K_{m}(z)=z-f(z) \frac{L_{m-1}(z)}{L_{m}(z)} \tag{1.2}
\end{equation*}
$$

[^0]and the general form of the iteration (1.2) by
\[

$$
\begin{equation*}
U_{m}(v, z)=z-f(z) \frac{(v-z) L_{m-1}(z)+f(z) L_{m-2}(z)}{(v-z) L_{m}(z)+f(z) L_{m-1}(z)} \tag{1.3}
\end{equation*}
$$

\]

for a complex constant v in [6]. The Laguerre case (see [2, 7]) can be obtained from (1.3) by taking a polynomial f with $m=2$. We call $K_{m}(z)$ a Laguerre-like iteration function.

We first give some relevant properties of the Laguerre-like iteration functions before proving the main theorem.

In [1], the recursion formula for L_{m} is obtained by

$$
\begin{equation*}
L_{m}(z)=f^{\prime}(z) L_{m-1}(z)-\frac{1}{m-1} f(z) L_{m-1}^{\prime}(z), m \geq 2 \tag{1.4}
\end{equation*}
$$

Theorem 1.1. [1] Let $f(z)$ be an analytic function with a simple zero at α. Suppose L_{m} satisfies the identity (1.4) for each $m \geq 2$ and define $K_{m}(z)$ as in (1.2). Then the fixed-point iteration $z_{n+1}=K_{m}\left(z_{n}\right), n=$ $1,2, \ldots$ has m th-order of convergence.

From (1.3), $\lim _{v \rightarrow z} U_{m}(v, z)=z-f(z) \frac{L_{m-2}(z)}{L_{m-1}(z)}$ and $\lim _{v \rightarrow \infty} U_{m}(v, z)=z-$ $f(z) \frac{L_{m-1}(z)}{L_{m}(z)}$ which have the order of convergence $m-1$ and m, respectively.

Theorem 1.2. [1] Let $f(z)$ be an analytic function with a simple zero at α. Suppose v is a complex constant with $v \neq \alpha$. For each $m \geq 2$, define $U_{m}(v, z)$ as in (1.3). Then the iterations

$$
z_{n+1}=U_{m}\left(v, z_{n}\right), n=1,2, \ldots
$$

converge to α and the order of convergence is m.
If α is a zero of f, then it is necessarily to be a fixed-point of K_{m}, i.e. $f(\alpha)=0$ implies $K_{m}(\alpha)=\alpha$. The converse however may not be true.

Definition 1.3. If $K_{m}(\alpha)=\alpha$ but $f(\alpha) \neq 0$, then α is said to be an extraneous fixed-point of K_{m}. An extraneous fixed-point is said to be repulsive if it satisfies the following property:

$$
\begin{equation*}
\left|K_{m}^{\prime}(\alpha)\right|>1 . \tag{1.5}
\end{equation*}
$$

The definition of extraneous fixed-points and repulsive fixed-point applies to more general iteration functions for root-finding (see [8]) and the extraneous fixed-points of the basic family are repulsive in [5]. The basic family is a family of iteration functions consisting of the determinant of
a Toeplitz matrix for the normalized derivative for an analytic function with a simple zero ($[3,4]$).

In this paper, we shall examine the property of repulsive for the Laguerre-like iteration functions (1.2) and (1.3).

2. Repulsive fixed points

Theorem 2.1. For any $m \geq 2$, the extraneous fixed-points of $K_{m}(z)$ are repulsive. More specifically, if α is an extraneous fixed-point of K_{m}, then $\left|K_{m}^{\prime}(\alpha)\right|>1$.

Proof. Suppose that $K_{m}(\alpha)=\alpha$, but $f(\alpha) \neq 0$. From the equation (1.2), we have $L_{m-1}(\alpha)=0$ and thus (1.4) implies that

$$
\begin{equation*}
L_{m}(\alpha)=-\frac{1}{m-1} f(\alpha) L_{m-1}^{\prime}(\alpha) \tag{2.1}
\end{equation*}
$$

Direct differentiation of $K_{m}(z)$ yields

$$
\begin{equation*}
K_{m}^{\prime}(z)=1-f^{\prime}(z) \frac{L_{m-1}(z)}{L_{m}(z)}-f(z) \frac{L_{m-1}^{\prime}(z) L_{m}(z)-L_{m-1}(z) L_{m}^{\prime}(z)}{L_{m}(z)^{2}} \tag{2.2}
\end{equation*}
$$

Substituting $L_{m-1}(\alpha)=0$ and $L_{m}(\alpha)$ from (2.1) into (2.2), and simplifying then we obtain

$$
\begin{equation*}
K_{m}^{\prime}(\alpha)=1+(m-1)=m \tag{2.3}
\end{equation*}
$$

The above proof assumes that $L_{m}(\alpha)$ is non-zero which implies that α is a simple root of L_{m-1}. Hence, α is repulsive.

Theorem 2.2. Suppose v is a complex constant with $v \neq \alpha$. Then for each $m \geq 2$ the extraneous fixed-points of $U_{m}(v, z)$ are repulsive. More specifically, if α is an extraneous fixed-point of U_{m}, then $\left|U_{m}^{\prime}(\alpha)\right|>1$.

Proof. Suppose that α is an extraneous fixed-point of $U_{m}(v, z)$, i.e., $U_{m}(\alpha)=\alpha$, but $f(\alpha) \neq 0$. Equation (1.3) is

$$
\begin{equation*}
U_{m}(v, z)=z-f(z) \frac{P_{m-1}(z)}{P_{m}(z)} \tag{2.4}
\end{equation*}
$$

where $P_{m}(z)=(v-z) L_{m}(z)+f(z) L_{m-1}(z)$ for $m \geq 2$. Since α is an extraneous fixed-point of $U_{m}(v, z)$, we have the following two cases in order to satisfy $P_{m-1}(\alpha)=0$;
(i) $L_{m-1}(\alpha)=0$ and $L_{m-2}(\alpha)=0$ but $L_{m}(\alpha) \neq 0, m \geq 2$
(ii) $v=K_{m-1}(\alpha)$ but $v \neq K_{m}(\alpha), \quad m \geq 2$
where $K_{m}(\alpha)$ is defined as in (1.2). We note that $L_{m-1}(\alpha) \neq 0$ and $L_{m-2}(\alpha) \neq 0$ since $v \neq \alpha$ in the case of $(i i)$.

Differentiating $U_{m}(v, z)$ with respect to z, we obtain

$$
U_{m}^{\prime}(v, z)=1-f^{\prime}(z) \frac{P_{m-1}(z)}{P_{m}(z)}-f(z) \frac{P_{m-1}^{\prime}(z) P_{m}(z)-P_{m-1}(z) P_{m}^{\prime}(z)}{P_{m}(z)^{2}}
$$

and then evaluating at α, then

$$
\begin{equation*}
U_{m}^{\prime}(v, \alpha)=1-f(\alpha) \frac{P_{m-1}^{\prime}(\alpha)}{P_{m}(\alpha)} \tag{2.5}
\end{equation*}
$$

In the case of (i), we have

$$
\begin{align*}
& P_{m-1}(\alpha)=0, P_{m}(\alpha)=(v-\alpha) L_{m}(\alpha), \tag{2.6}\\
& P_{m-1}^{\prime}(\alpha)=(v-\alpha) L_{m-1}^{\prime}(\alpha)+f(\alpha) L_{m-2}^{\prime}(\alpha)=(v-\alpha) L_{m-1}^{\prime}(\alpha)
\end{align*}
$$

since $f(\alpha) L_{m-2}^{\prime}(\alpha)=(m-2)\left(f^{\prime}(\alpha) L_{m-2}(\alpha)-L_{m-1}(\alpha)\right)=0$ by (1.4). Substituting (2.6) into (2.5), and applying (2.1)

$$
U_{m}^{\prime}(\alpha)=1-f(\alpha) \frac{L_{m-1}^{\prime}(\alpha)}{L_{m}(\alpha)}=1+(m-1)=m
$$

The above proof assume that $L_{m}(\alpha)$ is non-zero which implies that α is a simple zero of $L_{m-1}(z)$. Hence in the case of (i), the simple zero at α of $L_{m-1}(z)$ is repulsive.

We now consider the case of $(i i)$. Differentiating $P_{m-1}(z)$ and then

$$
\begin{aligned}
P_{m-1}^{\prime}(\alpha)= & (v-\alpha) L_{m-1}^{\prime}(\alpha)-L_{m-1}(\alpha)+f^{\prime}(\alpha) L_{m-2}(\alpha)+f(\alpha) L_{m-2}^{\prime}(\alpha) \\
= & -f(\alpha) L_{m-1}^{\prime}(\alpha) \frac{L_{m-2}(\alpha)}{L_{m-1}(\alpha)}-L_{m-1}(\alpha)+f^{\prime}(\alpha) L_{m-2}(\alpha)+f(\alpha) L_{m-2}^{\prime}(\alpha) \\
= & -(m-1)\left(f^{\prime}(\alpha) L_{m-1}(\alpha)-L_{m}(\alpha)\right) \frac{L_{m-2}(\alpha)}{L_{m-1}(\alpha)}-L_{m-1}(\alpha) \\
& +f^{\prime}(\alpha) L_{m-2}(\alpha)+(m-2)\left(f^{\prime}(\alpha) L_{m-2}(\alpha)-L_{m-1}(\alpha)\right)
\end{aligned}
$$

by the recursion formula (1.4). Therefore, we have

$$
\begin{align*}
& P_{m-1}^{\prime}(\alpha)=(m-1)\left(\frac{L_{m-2}(\alpha)}{L_{m-1}(\alpha)} L_{m}(\alpha)-L_{m-1}(\alpha)\right) \tag{2.7}\\
& P_{m}(\alpha)=(v-\alpha) L_{m}(\alpha)+f(\alpha) L_{m-1}(\alpha)=-f(\alpha)\left(\frac{L_{m-2}(\alpha)}{L_{m-1}(\alpha)} L_{m}(\alpha)-L_{m-1}(\alpha)\right)
\end{align*}
$$

Since $v \neq K_{m}(\alpha)$, we have $\frac{L_{m-2}(\alpha)}{L_{m-1}(\alpha)} \neq \frac{L_{m-1}(\alpha)}{L_{m}(\alpha)}$. Plugging (2.7) into (2.5), then we obtain

$$
U_{m}^{\prime}(\alpha)=1-f(\alpha) \frac{P_{m-1}^{\prime}(\alpha)}{P_{m}(\alpha)}=1+(m-1)=m
$$

From both cases of (i) and (ii), the extraneous fixed-point α is always repulsive.

References

[1] Y.M. Ham, S-G. Lee and J. Ridenhour, A generation of a determinantal family of iteration functions and its characterization, Preprint.
[2] P. Henrici, Applied and Computational Complex Analysis, Vol.I, Wiley, New York, 1974.
[3] B. Kalantari and J. Gerlach, Newton's method and generation of a determinantal family of iteration functions, J. Comput. Appl. Math. 116, (2000), pp. 195-200.
[4] B. Kalantari, I. Kalantari and R. Zaare-Nahandi, A basic family of iteration functions for polynomial root finding and its characterizations, J. Comput. Appl. Math. 80, (1997), pp. 209-226.
[5] B. Kalantari and Y. Jin, On extraneous fixed-points of the basic family of iteration functions, BIT 43, (2003), pp. 453-458.
[6] S. Kulik, On the Laguerre method for separating the roots of algebraic equations, Proceedings of AMS, 8, (1957), pp. 841-843.
[7] E. N. Laguerre, Oeuvres de Laguerre, Gauthier-Villars, Paris, 1, (1880), pp. 87-103.
[8] E. R. Vrscay and W. J. Gilbert, Extraneous fixed points, basin boundaries and chaotic dynamics for Schröder and Königit eration functions, Numer. Math., 52, (1988), pp. 1-16.

Department of Mathematics
Kyonggi University
Suwon 443-760, Republic of Korea
E-mail: ymham@kyonggi.ac.kr
Department of Mathematics
Sungkyunkwan University
Suwon 440-746, Republic of Korea
E-mail: sglee@skku.edu

[^0]: Received January 14, 2008.
 2000 Mathematics Subject Classification: 65H05, 65E05, 65H05, 65Y20, 30D05.
 Key words and phrases: iteration function; Laguerre's iteration function; fixedpoint;repulsive.

 This is Supported by the SRC/ERC program of MOST/KOSEF R11-1999-054 \& BK21.
 *Corresponding author.

