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REPULSIVE FIXED-POINTS OF THE LAGUERRE-LIKE

ITERATION FUNCTIONS

YoonMee Ham and Sang-Gu Lee∗

Abstract. Let f be an analytic function with a simple zero in
the reals or the complex numbers. An extraneous fixed-point of an
iteration function is a fixed-point different from a zero of f . We prove
that all extraneous fixed-points of Laguerre-like iteration functions
and general Laguerre-like functions are repulsive.

1. Introduction

Suppose that f(z) is analytic with a simple zero at α in either the
reals or the complex numbers. Let L0(z) = 1 and

(1.1) Lm(z) = det



f ′(z) f(z) 0 · · · 0
f ′′(z) f ′(z) f(z) . . . 0

...
...

...
. . .

f (m−1)(z)
(m−2)!

f (m−2)(z)
(m−2)!

f (m−3)(z)
(m−3)!

. . . f(z)

f (m)(z)
(m−1)!

f (m−1)(z)
(m−1)!

f (m−2)(z)
(m−2)!

. . . f ′(z)

 ,

where det(·) denotes the determinant. Lm(z) is the determinant of a
Toeplitz-like matrix (see [1, 6]). For each m ≥ 2, recursively define

(1.2) Km(z) = z − f(z)
Lm−1(z)

Lm(z)
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and the general form of the iteration (1.2) by

(1.3) Um(v, z) = z − f(z)
(v − z)Lm−1(z) + f(z)Lm−2(z)

(v − z)Lm(z) + f(z)Lm−1(z)

for a complex constant v in [6]. The Laguerre case (see [2, 7]) can be
obtained from (1.3) by taking a polynomial f with m = 2. We call Km(z)
a Laguerre-like iteration function.

We first give some relevant properties of the Laguerre-like iteration
functions before proving the main theorem.

In [1], the recursion formula for Lm is obtained by

(1.4) Lm(z) = f ′(z) Lm−1(z) − 1
m−1

f(z) L′m−1(z) , m ≥ 2.

Theorem 1.1. [1] Let f(z) be an analytic function with a simple zero
at α. Suppose Lm satisfies the identity (1.4) for each m ≥ 2 and define
Km(z) as in (1.2). Then the fixed-point iteration zn+1 = Km(zn), n =
1, 2, . . . has mth-order of convergence.

From (1.3), lim
v→z

Um(v, z) = z − f(z)Lm−2(z)
Lm−1(z)

and lim
v→∞

Um(v, z) = z −

f(z)Lm−1(z)
Lm(z)

which have the order of convergence m − 1 and m, respec-

tively.

Theorem 1.2. [1] Let f(z) be an analytic function with a simple zero
at α. Suppose v is a complex constant with v 6= α. For each m ≥ 2,
define Um(v, z) as in (1.3). Then the iterations

zn+1 = Um(v, zn), n = 1, 2, . . .

converge to α and the order of convergence is m.

If α is a zero of f , then it is necessarily to be a fixed-point of Km, i.e.
f(α) = 0 implies Km(α) = α. The converse however may not be true.

Definition 1.3. If Km(α) = α but f(α) 6= 0, then α is said to be an
extraneous fixed-point of Km. An extraneous fixed-point is said to be
repulsive if it satisfies the following property:

(1.5) |K ′
m(α)| > 1.

The definition of extraneous fixed-points and repulsive fixed-point ap-
plies to more general iteration functions for root-finding (see [8]) and the
extraneous fixed-points of the basic family are repulsive in [5]. The basic
family is a family of iteration functions consisting of the determinant of
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a Toeplitz matrix for the normalized derivative for an analytic function
with a simple zero ([3, 4]).

In this paper, we shall examine the property of repulsive for the
Laguerre-like iteration functions (1.2) and (1.3).

2. Repulsive fixed points

Theorem 2.1. For any m ≥ 2, the extraneous fixed-points of Km(z)
are repulsive. More specifically, if α is an extraneous fixed-point of Km,
then |K ′

m(α)| > 1.

Proof. Suppose that Km(α) = α, but f(α) 6= 0 . From the equation
(1.2), we have Lm−1(α) = 0 and thus (1.4) implies that

(2.1) Lm(α) = − 1

m − 1
f(α) L′m−1(α).

Direct differentiation of Km(z) yields
(2.2)

K ′
m(z) = 1 − f ′(z)

Lm−1(z)

Lm(z)
− f(z)

L′m−1(z) Lm(z) − Lm−1(z) L′m(z)

Lm(z)2
.

Substituting Lm−1(α) = 0 and Lm(α) from (2.1) into (2.2), and simpli-
fying then we obtain

(2.3) K ′
m(α) = 1 + (m − 1) = m.

The above proof assumes that Lm(α) is non-zero which implies that α
is a simple root of Lm−1. Hence, α is repulsive.

Theorem 2.2. Suppose v is a complex constant with v 6= α. Then for
each m ≥ 2 the extraneous fixed-points of Um(v, z) are repulsive. More
specifically, if α is an extraneous fixed-point of Um, then |U ′

m(α)| > 1.

Proof. Suppose that α is an extraneous fixed-point of Um(v, z), i.e.,
Um(α) = α, but f(α) 6= 0. Equation (1.3) is

(2.4) Um(v, z) = z − f(z)
Pm−1(z)

Pm(z)
,

where Pm(z) = (v − z)Lm(z) + f(z)Lm−1(z) for m ≥ 2. Since α is an
extraneous fixed-point of Um(v, z), we have the following two cases in
order to satisfy Pm−1(α) = 0;
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(i) Lm−1(α) = 0 and Lm−2(α) = 0 but Lm(α) 6= 0, m ≥ 2

(ii) v = Km−1(α) but v 6= Km(α), m ≥ 2

where Km(α) is defined as in (1.2). We note that Lm−1(α) 6= 0 and
Lm−2(α) 6= 0 since v 6= α in the case of (ii).

Differentiating Um(v, z) with respect to z, we obtain

U ′
m(v, z) = 1 − f ′(z)

Pm−1(z)

Pm(z)
− f(z)

P ′
m−1(z)Pm(z) − Pm−1(z)P ′

m(z)

Pm(z)2

and then evaluating at α, then

(2.5) U ′
m(v, α) = 1 − f(α)

P ′
m−1(α)

Pm(α)
.

In the case of (i), we have

(2.6)
Pm−1(α) = 0, Pm(α) = (v − α)Lm(α),

P ′
m−1(α) = (v − α)L′m−1(α) + f(α)L′m−2(α) = (v − α)L′m−1(α)

since f(α)L′m−2(α) = (m − 2)(f ′(α)Lm−2(α) − Lm−1(α)) = 0 by (1.4).
Substituting (2.6) into (2.5), and applying (2.1)

U ′
m(α) = 1 − f(α)

L′m−1(α)

Lm(α)
= 1 + (m − 1) = m.

The above proof assume that Lm(α) is non-zero which implies that α is
a simple zero of Lm−1(z). Hence in the case of (i), the simple zero at α
of Lm−1(z) is repulsive.

We now consider the case of (ii). Differentiating Pm−1(z) and then

P ′
m−1(α) = (v − α)L′m−1(α) − Lm−1(α) + f ′(α)Lm−2(α) + f(α)L′m−2(α)

= −f(α) L′m−1(α) Lm−2(α)
Lm−1(α)

− Lm−1(α) + f ′(α)Lm−2(α) + f(α)L′m−2(α)

= −(m − 1)(f ′(α)Lm−1(α) − Lm(α)) Lm−2(α)
Lm−1(α)

− Lm−1(α)

+f ′(α)Lm−2(α) + (m − 2)(f ′(α)Lm−2(α) − Lm−1(α))

by the recursion formula (1.4). Therefore, we have
(2.7)

P ′
m−1(α) = (m − 1)

(
Lm−2(α)
Lm−1(α)

Lm(α) − Lm−1(α)
)

,

Pm(α) = (v − α)Lm(α) + f(α)Lm−1(α) = −f(α)
(

Lm−2(α)
Lm−1(α)

Lm(α) − Lm−1(α)
)
.
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Since v 6= Km(α), we have Lm−2(α)
Lm−1(α)

6= Lm−1(α)
Lm(α)

. Plugging (2.7) into (2.5),

then we obtain

U ′
m(α) = 1 − f(α)

P ′
m−1(α)

Pm(α)
= 1 + (m − 1) = m.

From both cases of (i) and (ii), the extraneous fixed-point α is always
repulsive.
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