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REPULSIVE FIXED-POINTS OF THE LAGUERRE-LIKE
ITERATION FUNCTIONS

YooNMEE HAM AND SANG-GU LEE*

ABSTRACT. Let f be an analytic function with a simple zero in
the reals or the complex numbers. An extraneous fixed-point of an
iteration function is a fixed-point different from a zero of f. We prove
that all extraneous fixed-points of Laguerre-like iteration functions
and general Laguerre-like functions are repulsive.

1. Introduction

Suppose that f(z) is analytic with a simple zero at « in either the
reals or the complex numbers. Let Ly(z) = 1 and

f/(z) f(Z) 0 ce 0
') e fzm) 0
(1.1)  Lin(2) = det : : L |
fr @) frDe) fd ()
e Rl e e S ()
M) frNE) (D ()
(m—1)! (m—1)! R f'(z)

where det(-) denotes the determinant. L,,(z) is the determinant of a
Toeplitz-like matrix (see [1, 6]). For each m > 2, recursively define

Li1(2)
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and the general form of the iteration (1.2) by

(v = 2) Lm-1(2) + f(2) Lm—2(2)

L s AR Py Ty )
for a complex constant v in [6]. The Laguerre case (see [2, 7]) can be
obtained from (1.3) by taking a polynomial f with m = 2. We call K,,,(z)
a Laguerre-like iteration function.

We first give some relevant properties of the Laguerre-like iteration
functions before proving the main theorem.

In [1], the recursion formula for L,, is obtained by

(14)  Lin(2) = f'(2) Lna(2) = 55 £ (2) Ly (2), m > 2.

m—1

THEOREM 1.1. [1] Let f(z) be an analytic function with a simple zero
at o. Suppose L, satisfies the identity (1.4) for each m > 2 and define
K,,(2) as in (1.2). Then the fixed-point iteration z,.1 = K;,(2,), n =
1,2,... has mth-order of convergence.

From (1.3), l:rri Un(v,2) = z — f(z)i’"n:—jg and T}Lrgo Upn(v,2) = 2 —
f (z)LLm":—(lzf;) which have the order of convergence m — 1 and m, respec-
tively.

THEOREM 1.2. [1] Let f(z) be an analytic function with a simple zero
at a. Suppose v is a complex constant with v # «. For each m > 2,
define U,, (v, z) as in (1.3). Then the iterations

Zn1 = Un(v,2,), n=1,2,...
converge to o and the order of convergence is m.

If v is a zero of f, then it is necessarily to be a fixed-point of K,,, i.e.
f(a) = 0 implies K,,(a)) = a. The converse however may not be true.

DEFINITION 1.3. If K,,,(ar) = « but f(a) # 0, then « is said to be an
extraneous fixed-point of K,,. An extraneous fixed-point is said to be
repulsive if it satisfies the following property:

(1.5) K" ()] > 1.

The definition of extraneous fixed-points and repulsive fixed-point ap-
plies to more general iteration functions for root-finding (see [8]) and the
extraneous fixed-points of the basic family are repulsive in [5]. The basic
family is a family of iteration functions consisting of the determinant of
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a Toeplitz matrix for the normalized derivative for an analytic function
with a simple zero ([3, 4]).

In this paper, we shall examine the property of repulsive for the
Laguerre-like iteration functions (1.2) and (1.3).

2. Repulsive fixed points

THEOREM 2.1. For any m > 2, the extraneous fixed-points of K,,(2)

are repulsive. More specifically, if a is an extraneous fixed-point of K,,,
then | K] (a)| > 1.

Proof. Suppose that K,,(a) = a, but f(a) # 0 . From the equation
(1.2), we have L,,—;(a) = 0 and thus (1.4) implies that

1
(2.1) Ly(a) = —mf(a) Ly, ().
Direct differentiation of K,,(z) yields
(2.2)

K (2)=1- f(z) LLm;—ES) () Ena ) Lm(z)m ?jzml(z) Lin(2).

Substituting L,,—1(a) = 0 and L,,(«) from (2.1) into (2.2), and simpli-
fying then we obtain

(2.3) K, (a)=1+(m—1)=m.
The above proof assumes that L,,(«) is non-zero which implies that «
is a simple root of L,,_;. Hence, « is repulsive. O

THEOREM 2.2. Suppose v is a complex constant with v # «. Then for
each m > 2 the extraneous fixed-points of U, (v, z) are repulsive. More
specifically, if « is an extraneous fixed-point of U,,, then |U] (a)| > 1.

Proof. Suppose that « is an extraneous fixed-point of U,, (v, 2), i.e.,
Un(a) = o, but f(a) # 0. Equation (1.3) is

(2.4) Un(v,2) = 2 — () P;m—ff ,

where P,,(z) = (v — 2) Ly, (2) + f(2)Ly—1(z) for m > 2. Since « is an
extraneous fixed-point of U,,(v,z), we have the following two cases in
order to satisfy P,,—1(a) = 0;



54 YoonMee Ham and Sang-Gu Lee
(1) Lyp—1(a) =0and L,,_o(a) =0 but L,,(a) #0, m > 2

(17) v = Kp_1(a) but v # Kp(«), m > 2
where K, (a) is defined as in (1.2). We note that L,,_;(a) # 0 and
Lp—o(a) # 0 since v # « in the case of (ii).
Differentiating U,, (v, z) with respect to z, we obtain

Un(0,2) = 1= 1/2) 2t o) Fua )= Sactnl)
and then evaluating at «, then
(2.5) Ul (v,a) =1 — f(a)ié;—g;),

In the case of (i), we have

P, 1(a) =0, Py(a) = (v—a)L,(a),

Fra(@) = (v —a)Ly, (a) + fa) L, (@) = (v—a) L, ()

since f(a) Ll o(@) = (m — 2)(f'(0)Lin-2(a) — Lun_1(a)) = 0 by (1.4).

Substituting (2.6) into (2.5), and applying (2.1)

Ly ()
Ly(a)

The above proof assume that L,,(«) is non-zero which implies that « is

a simple zero of L,,_1(z). Hence in the case of (7), the simple zero at «
of Ly,—1(z) is repulsive.

(2.6)

U (a)=1- f(a) =1+(m—-1)=m.

We now consider the case of (i7). Differentiating P,,_1(z) and then
(@) = =a)ly, (@) = Lna(@) + fi(@) Lna(@) + f(@) L, (@)
= () Ly (0) 2229 (@) 4 (@) L a(a) + (@)Ll s(c)
= (= (@)L 1(0) ~ L) 22— L, ()
+/' (@) Lin—a(@) + (m = 2)(f'(a) Lin—2(@) = Lin—1(e))

by the recursion formula (1.4). Therefore, we have
(2.7)

Phyi() = (m = 1) (224 L) = Lun-1(a))
Po(@) = (v = ) Ln(@) + (@) Lyn-1(0) = = f(0) (£22E Lin(a) = Lin-1(a)).
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Since v # K,n(a), we have Zm=2(0) - Lm-1(0) "pjyoging (2.7) into (2.5),

mel(a) Lm(OL)
then we obtain
P/
Ul (o) = 1—f(a)#éo;) =1+(m-—1)=m.
From both cases of (i) and (i), the extraneous fixed-point « is always
repulsive. O
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