HODGE NUMBERS OF CALABI-YAU MANIFOLDS BY SMOOTHING OF NORMAL CROSSING VARIETIES

Nam-Hoon Lee*

Abstract

We give a formula for the Hodge numbers of CalabiYau 3 -folds, constructed by smoothing and calculate the Hodge numbers of Calabi-Yau 3-folds of Y. Kawamata and Y. Namikawa.

1. Introduction

A Calabi-Yau manifold is a compact Kähler manifold with trivial canonical class such that the intermediate cohomology groups of its structure sheaf are trivial $\left(h^{i}\left(\mathcal{O}_{X}\right)=0\right.$ for $\left.0<i<\operatorname{dim}(X)\right)$. Simple examples are a smooth quintic hypersurface in \mathbb{P}^{4} and a complete intersection of two cubics in \mathbb{P}^{5}. Y. Kawamata and Y. Namikawa suggested a different way of construction, that is, by smoothing normal crossing varieties ([3], see Theorem 3.1 in this note).

A normal crossing variety is a reduced complex analytic space which is locally isomorphic to a normal crossing divisor on a smooth variety and it is called simple if its components are all smooth. From now on, a normal crossing variety will mean a simple one unless stated otherwise. By smoothing normal crossing varieties, Y. Kawamata and Y. Namikawa constructed 26 classes of examples of Calabi-Yau 3-folds up to the topological Euler numbers([3]). However they did not provide the Hodge numbers.

The purpose of this short note is to give a formula for the Hodge numbers (Corollary 3.3) and calculate the Hodge numbers of Calabi-Yau 3 -folds of Y. Kawamata and Y. Namikawa (Table 3, 185 pairs). It turns

[^0]out that many of examples have the different Hodge numbers although their Euler number are identical - so they were undistinguishable by the Euler number calculation of Kawamata and Namikawa.

2. Notations and preliminary results

Let $\pi: X \rightarrow \bar{\Delta}$ be a proper map from a Kähler $(n+1)$-fold X with boundary onto a closed disk $\bar{\Delta}=\{t \in \mathbb{C} \mid\|t\| \leq 1\}$ such that the fibers $X_{t}=\pi^{-1}(t)$ are connected n-folds for every $t \neq 0$ (generic) and the central fiber

$$
X_{0}=\pi^{-1}(0)=\bigcup_{\alpha=1}^{r} Y_{\alpha}
$$

is a normal crossing of n-folds. We denote the generic fiber by X_{t}. The condition, $t \neq 0$, is assumed in this notation. We call such a map π (or simply the total space X) a semi-stable degeneration of X_{t} and X_{0} the central fiber.

We will need the following result (Theorem 3.2.1 in [6]), obtained by analyzing the Clemens-Schmid exact sequence ([1]).

Theorem 2.1. Suppose that $h^{2,0}\left(X_{t}\right)=0$. Then

$$
h^{1,1}\left(X_{t}\right)=h^{2}\left(X_{0}\right)-r+1
$$

where r is the number of components of X_{0}.
Note that we have $h^{2,0}\left(X_{t}\right)=0$ for a Calabi-Yau manifold X_{t} of dimension higher than two. There is a well-known formula for Euler numbers. So we can determine all the Hodge numbers of X_{t} by the above theorem when $\operatorname{dim} X_{t}=3$.

3. Hodge numbers of Calabi-Yau 3-folds by Y. Kawamata and Y. Namikawa

Now we state the theorem of Y. Kawamata and Y. Namikawa ([3]), which is a generalization of a result of R. Friedman ([2]).

Theorem 3.1 (Y. Kawamata, Y. Namikawa). Let $X_{0}=\bigcup_{i} Y_{i}$ be (not necessarily simple) normal crossing of dimension $n \geq 3$ such that

1. Its dualizing sheaf is trivial: $\omega_{X_{0}}=\mathcal{O}_{X_{0}}$.
2. $H^{n-2}\left(Y_{i}, \mathcal{O}_{Y_{i}}\right)=0$ for any i and $H^{n-1}\left(X_{0}, \mathcal{O}_{X_{0}}\right)=0$.
3. It is Kähler.
4. It has a logarithmic structure.

Then X_{0} is smoothable to an n-fold with the smooth total space (semistable degeneration).

The 'logarithmic structure' is also called as d-semistability. It will be explained shortly for a simpler case that is necessary in this note. From now on, we restrict ourselves to the three dimension.

The case in which the central fiber has only two components occurs very often. That is, $X_{0}=Y_{1} \cup Y_{2}$. Let $D=Y_{1} \cap Y_{2}$. Then the conditions in the above theorem correspond to the followings:

1. $D \in\left|-K_{Y_{i}}\right|$ for $i=1,2$.
2. $H^{1}\left(\mathcal{O}_{Y_{i}}\right)=H^{1}\left(\mathcal{O}_{D}\right)=0$. Note that this condition, together with (1), implies that D is a $K 3$ surface.
3. There are ample divisors H_{1}, H_{2} on Y_{1}, Y_{2} respectively such that $\left.H_{1}\right|_{D}$ is linearly equivalent to $\left.H_{2}\right|_{D}$.
4. $N_{D / Y_{1}} \otimes N_{D / Y_{2}}=\mathcal{O}_{D}$, where $N_{D / Y_{i}}$ is the normal bundle to D in Y_{i}. This condition is called d-semistability.

By the above theorem, X_{0} is smoothable to a 3 -fold, X_{t} with $K_{X_{t}}=0$ and $h^{1}\left(\mathcal{O}_{X_{t}}\right)=h^{2}\left(\mathcal{O}_{X_{t}}\right)=0$. Accordingly X_{t} is a Calabi-Yau 3-fold.

Let us calculate the Hodge numbers of X_{t} :
Theorem 3.2. Let X_{t} be the smoothing of X_{0} as the above. Then

1. $h^{1,1}\left(X_{t}\right)=h^{2}\left(Y_{1}\right)+h^{2}\left(Y_{2}\right)-k-1$, where

$$
k=\operatorname{rk}\left(\operatorname{im}\left(H^{2}\left(Y_{1}, \mathbb{Z}\right) \oplus H^{2}\left(Y_{2}, \mathbb{Z}\right) \rightarrow H^{2}(D, \mathbb{Z})\right)\right)
$$

2. $h^{1,2}\left(X_{t}\right)=21+h^{1,2}\left(Y_{1}\right)+h^{1,2}\left(Y_{2}\right)-k$.

Proof.

1. From Theorem 2.1,

$$
\begin{aligned}
h^{1,1}\left(X_{t}\right) & =h^{2}\left(X_{t}\right) \\
& =h^{2}\left(X_{0}\right)-2+1 \\
& =\left(h^{2}\left(Y_{1}\right)+h^{2}\left(Y_{2}\right)-k\right)-1 \\
& =h^{2}\left(Y_{1}\right)+h^{2}\left(Y_{2}\right)-k-1
\end{aligned}
$$

2. $e\left(X_{t}\right)=e\left(Y_{1}\right)+e\left(Y_{2}\right)-2 e\left(Y_{1} \cap Y_{2}\right)=e\left(Y_{1}\right)+e\left(Y_{2}\right)-48$. Then the result easily comes from

$$
\begin{gathered}
e\left(X_{t}\right)=2\left(h^{1,1}\left(X_{t}\right)-h^{1,2}\left(X_{t}\right)\right) \\
e\left(Y_{i}\right)=2\left(h^{1,1}\left(Y_{i}\right)-h^{1,2}\left(Y_{i}\right)+1\right)
\end{gathered}
$$

We go over the examples of Calabi-Yau 3 -folds which are introduced in [3], p. 408. They are constructed from two copies of \mathbb{P}^{3}.

Let D be a smooth quartic $K 3$ surface in \mathbb{P}^{3}. Let $C=C_{1}+\cdots+C_{s}$ and $C^{\prime}=C_{1}^{\prime}+\cdots+C_{t}^{\prime}$ be reduced divisors of D which are composed of smooth curves. We make Y_{1} (resp., Y_{2}) by blowing up successively along with the proper transforms of C_{1}, \cdots, C_{s} (resp. $C_{1}^{\prime}, \cdots, C_{t}^{\prime}$) in this order. Let D_{i} be the proper transform in Y_{i} of D. Note that D_{i} is isomorphic to D. We make a normal crossing variety $X_{0}=Y_{1} \cup Y_{2}$ by identifying D_{1} in Y_{1} with D_{2} in Y_{2}. According to Theorem 4.2 in [3], there is a semistable degeneration of a Calabi-Yau 3-fold which has X_{0} as its central fiber if $C+C^{\prime} \in\left|\mathcal{O}_{D}(8)\right|$ and X_{0} is Kähler. In [3], they gave the topological Euler numbers.

Let us specify D as

$$
D=\left\{x_{0}^{4}+x_{1}^{4}+x_{2}^{4}+x_{3}^{4}=0\right\} \subset \mathbb{P}^{3}
$$

which is the Fermat quartic $K 3$ surface. We can define various divisors on it.

1. For a primitive 8 -th root of unity ξ, define the divisor $\Gamma_{i, j, k}$ of D as

$$
\Gamma_{i, j, k}=\left\{\left(x_{0}, \ldots, x_{3}\right) \in D \mid x_{i}=\xi^{k} x_{j}\right\}
$$

Let $L=\left\{\Gamma_{0,2,1}, \Gamma_{0,2,2}, \Gamma_{0,2,3}, \Gamma_{1,2,4}\right\}$. It can be easily shown that each of these $\Gamma_{i, j, k}$'s in L consists of 4 lines which meet at a single point.
2. For the sixteen lines on D, coming from those $\Gamma_{i, j, k}$'s in L, we can assign a divisor $F \in\left|\mathcal{O}_{D}(1)\right|$ as

$$
F=D \cap H
$$

where H is a generic hyperplane which contains the line. Then F is composed of the line and a smooth cubic curve. Let N be the set of such divisors. This cubic curves are newly introduced in this note to construct more examples of Calabi-Yau 3 -folds.

Now we take

$$
C=E_{1}+\cdots+E_{s}+\Gamma_{1}+\cdots+\Gamma_{a}+F_{1}+\cdots+F_{u}
$$

and

$$
C^{\prime}=E_{1}^{\prime}+\cdots+E_{t}^{\prime}+\Gamma_{1}^{\prime}+\cdots+\Gamma_{b}^{\prime}+F_{1}^{\prime}+\cdots+F_{v}^{\prime}
$$

where E_{i} and E_{j}^{\prime} for $1 \leq i \leq s, 1 \leq j \leq t$ are members of $\left|\mathcal{O}_{D}\left(e_{i}\right)\right|$ and $\left|\mathcal{O}_{D}\left(e_{i}^{\prime}\right)\right|, \Gamma_{i}$ and Γ_{j}^{\prime} are members of L, F_{i} and F_{j}^{\prime} are members of N
respectively such that

$$
a+b+\sum_{i} e_{i}+\sum_{j} e_{j}^{\prime}+u+v=8
$$

Then X_{0} is smoothable and the Hodge numbers are given by the following corollary, which is a simple application of Theorem 3.2.

Corollary 3.3. Let X_{t} be the smoothing of X_{0}, then the Hodge numbers of X_{t} are:

$$
\begin{aligned}
& h^{1,1}=\beta+4 \gamma+2 \delta \\
& h^{1,2}=20+2 \alpha+\beta+4 \gamma+2 \delta
\end{aligned}
$$

where $\alpha=\sum_{i} e_{i}^{2}+\sum_{j} e^{\prime 2}{ }_{j}, \beta=s+t, \gamma=a+b$ and $\delta=u+v$.
The following (Table 3) is the exhaustive list of Hodge numbers of Calabi-Yau 3 -folds constructible in this way. For example, if one take $a=b=0, s=1, t=0, e_{1}=8$, and $u=v=0$,

$$
\begin{aligned}
& h^{1,1}=1+0+0=1 \\
& h^{1,2}=20+2 \cdot 64+1+0+0=149 \\
& e=2\left(h^{1,1}-h^{1,2}\right)=-296
\end{aligned}
$$

Note that there are many examples with the same Euler number that have different Hodge numbers in the table.

Acknowledgement: The author is grateful for several valuable comments from the referee.

References

[1] C. Clemens, Degeneration of Kähler manifolds, Duke Math. J. 44 (1977), 215290
[2] R. Friedman, Global smoothings of varieties with normal crossings, Ann. of Math. (2) 118 (1983), no. 1, 75-114.
[3] Y. Kawamata and Y. Namikawa, Logarithmic deformations of normal crossing varieties and smoothing of degenerate Calabi-Yau varieties, Invent. Math. J. 118 (1994), 395-409
[4] V. Kulikov, Degenerations of K3 surfaces and Enriques surfaces, Uspehi Mat. Nauk. 195 (1977), no. 3, 167-168
[5] V. Kulikov, P. Kurchanov, Complex algebraic Varieties : periods of Integrals and Hodge Structures, Algebraic geometry III, 1-217, 263-270, Encyclopaedia Math. Sci. 36, Springer, Berlin, 1998.
[6] N.-H. Lee, Constructive Calabi-Yau Manifolds, PhD thesis, University of Michigan, 2006.

TABLE 1. Hodge numbers of Calabi-Yau 3-folds

Department of Mathematics Education
Hongik University
Seoul 121-791, Republic of Korea
E-mail: nhlee@hongik.ac.kr

[^0]: Received October 28, 2008; Revised November 18, 2008; Accepted November 20, 2008.

 2000 Mathematics Subject Classification: Primary 14J32, 14D06.
 Key words and phrases: Calabi-Yau 3 -fold, degeneration, smoothing, Hodge numbers.

 This work was supported by the Hongik University new faculty research support fund.

