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HODGE NUMBERS OF CALABI–YAU MANIFOLDS BY
SMOOTHING OF NORMAL CROSSING VARIETIES

Nam-Hoon Lee*

Abstract. We give a formula for the Hodge numbers of Calabi–
Yau 3-folds, constructed by smoothing and calculate the Hodge
numbers of Calabi–Yau 3-folds of Y. Kawamata and Y. Namikawa.

1. Introduction

A Calabi–Yau manifold is a compact Kähler manifold with trivial
canonical class such that the intermediate cohomology groups of its
structure sheaf are trivial (hi(OX) = 0 for 0 < i < dim(X)). Sim-
ple examples are a smooth quintic hypersurface in P4 and a complete
intersection of two cubics in P5. Y. Kawamata and Y. Namikawa sug-
gested a different way of construction, that is, by smoothing normal
crossing varieties ([3], see Theorem 3.1 in this note).

A normal crossing variety is a reduced complex analytic space which
is locally isomorphic to a normal crossing divisor on a smooth variety
and it is called simple if its components are all smooth. From now on,
a normal crossing variety will mean a simple one unless stated other-
wise. By smoothing normal crossing varieties, Y. Kawamata and Y.
Namikawa constructed 26 classes of examples of Calabi–Yau 3-folds up
to the topological Euler numbers([3]). However they did not provide the
Hodge numbers.

The purpose of this short note is to give a formula for the Hodge
numbers (Corollary 3.3) and calculate the Hodge numbers of Calabi–Yau
3-folds of Y. Kawamata and Y. Namikawa (Table 3, 185 pairs). It turns
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out that many of examples have the different Hodge numbers although
their Euler number are identical – so they were undistinguishable by the
Euler number calculation of Kawamata and Namikawa.

2. Notations and preliminary results

Let π : X → ∆ be a proper map from a Kähler (n + 1)-fold X with
boundary onto a closed disk ∆ = {t ∈ C

∣∣‖t‖ ≤ 1} such that the fibers
Xt = π−1(t) are connected n-folds for every t 6= 0 (generic) and the
central fiber

X0 = π−1(0) =
r⋃

α=1

Yα

is a normal crossing of n-folds. We denote the generic fiber by Xt. The
condition, t 6= 0, is assumed in this notation. We call such a map π (or
simply the total space X) a semi-stable degeneration of Xt and X0 the
central fiber.

We will need the following result (Theorem 3.2.1 in [6]), obtained by
analyzing the Clemens-Schmid exact sequence ([1]).

Theorem 2.1. Suppose that h2,0(Xt) = 0. Then

h1,1(Xt) = h2(X0)− r + 1,

where r is the number of components of X0.

Note that we have h2,0(Xt) = 0 for a Calabi–Yau manifold Xt of
dimension higher than two. There is a well-known formula for Euler
numbers. So we can determine all the Hodge numbers of Xt by the
above theorem when dim Xt = 3.

3. Hodge numbers of Calabi–Yau 3-folds by Y. Kawamata
and Y. Namikawa

Now we state the theorem of Y. Kawamata and Y. Namikawa ([3]),
which is a generalization of a result of R. Friedman ([2]).

Theorem 3.1 (Y. Kawamata, Y. Namikawa). Let X0 =
⋃

i Yi be
(not necessarily simple) normal crossing of dimension n ≥ 3 such that

1. Its dualizing sheaf is trivial: ωX0 = OX0 .
2. Hn−2(Yi,OYi) = 0 for any i and Hn−1(X0,OX0) = 0.
3. It is Kähler.
4. It has a logarithmic structure.
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Then X0 is smoothable to an n-fold with the smooth total space (semistable
degeneration).

The ‘logarithmic structure’ is also called as d-semistability. It will be
explained shortly for a simpler case that is necessary in this note. From
now on, we restrict ourselves to the three dimension.

The case in which the central fiber has only two components occurs
very often. That is, X0 = Y1∪Y2. Let D = Y1∩Y2. Then the conditions
in the above theorem correspond to the followings:

1. D ∈ |−KYi | for i = 1, 2.
2. H1(OYi) = H1(OD) = 0. Note that this condition, together with

(1), implies that D is a K3 surface.
3. There are ample divisors H1, H2 on Y1, Y2 respectively such that

H1|D is linearly equivalent to H2|D.
4. ND/Y1

⊗ND/Y2
= OD, where ND/Yi

is the normal bundle to D in
Yi. This condition is called d-semistability.

By the above theorem, X0 is smoothable to a 3-fold, Xt with KXt = 0
and h1(OXt) = h2(OXt) = 0. Accordingly Xt is a Calabi–Yau 3-fold.

Let us calculate the Hodge numbers of Xt:

Theorem 3.2. Let Xt be the smoothing of X0 as the above. Then

1. h1,1(Xt) = h2(Y1) + h2(Y2)− k − 1, where

k = rk(im(H2(Y1, Z)⊕H2(Y2, Z) → H2(D, Z))).

2. h1,2(Xt) = 21 + h1,2(Y1) + h1,2(Y2)− k.

Proof.
1. From Theorem 2.1,

h1,1(Xt) = h2(Xt)

= h2(X0)− 2 + 1

= (h2(Y1) + h2(Y2)− k)− 1

= h2(Y1) + h2(Y2)− k − 1.

2. e(Xt) = e(Y1) + e(Y2) − 2e(Y1 ∩ Y2) = e(Y1) + e(Y2) − 48. Then
the result easily comes from

e(Xt) = 2(h1,1(Xt)− h1,2(Xt)),

e(Yi) = 2(h1,1(Yi)− h1,2(Yi) + 1).
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We go over the examples of Calabi–Yau 3-folds which are introduced
in [3], p. 408. They are constructed from two copies of P3.

Let D be a smooth quartic K3 surface in P3. Let C = C1 + · · ·+ Cs

and C ′ = C ′
1 + · · · + C ′

t be reduced divisors of D which are composed
of smooth curves. We make Y1 (resp., Y2) by blowing up successively
along with the proper transforms of C1, · · · , Cs (resp. C ′

1, · · · , C ′
t) in

this order. Let Di be the proper transform in Yi of D. Note that Di is
isomorphic to D. We make a normal crossing variety X0 = Y1 ∪ Y2 by
identifying D1 in Y1 with D2 in Y2. According to Theorem 4.2 in [3],
there is a semistable degeneration of a Calabi–Yau 3-fold which has X0

as its central fiber if C + C ′ ∈ |OD(8)| and X0 is Kähler. In [3], they
gave the topological Euler numbers.

Let us specify D as

D = {x4
0 + x4

1 + x4
2 + x4

3 = 0} ⊂ P3,

which is the Fermat quartic K3 surface. We can define various divisors
on it.

1. For a primitive 8-th root of unity ξ, define the divisor Γi,j,k of D
as

Γi,j,k = {(x0, . . . , x3) ∈ D|xi = ξkxj}
Let L = {Γ0,2,1,Γ0,2,2,Γ0,2,3,Γ1,2,4}. It can be easily shown that
each of these Γi,j,k’s in L consists of 4 lines which meet at a single
point.

2. For the sixteen lines on D, coming from those Γi,j,k’s in L, we can
assign a divisor F ∈ |OD(1)| as

F = D ∩H,

where H is a generic hyperplane which contains the line. Then F
is composed of the line and a smooth cubic curve. Let N be the
set of such divisors. This cubic curves are newly introduced in this
note to construct more examples of Calabi–Yau 3-folds.

Now we take

C = E1 + · · ·+ Es + Γ1 + · · ·+ Γa + F1 + · · ·+ Fu

and

C ′ = E′
1 + · · ·+ E′

t + Γ′
1 + · · ·+ Γ′

b + F ′
1 + · · ·+ F ′

v

where Ei and E′
j for 1 ≤ i ≤ s, 1 ≤ j ≤ t are members of |OD(ei)|

and |OD(e′i)|, Γi and Γ′
j are members of L, Fi and F ′

j are members of N
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respectively such that

a + b +
∑

i

ei +
∑

j

e′j + u + v = 8.

Then X0 is smoothable and the Hodge numbers are given by the follow-
ing corollary, which is a simple application of Theorem 3.2.

Corollary 3.3. Let Xt be the smoothing of X0, then the Hodge
numbers of Xt are:

h1,1 = β + 4γ + 2δ,

h1,2 = 20 + 2α + β + 4γ + 2δ,

where α =
∑

i e
2
i +

∑
j e′2j , β = s + t, γ = a + b and δ = u + v.

The following (Table 3) is the exhaustive list of Hodge numbers of
Calabi–Yau 3-folds constructible in this way. For example, if one take
a = b = 0, s = 1, t = 0, e1 = 8, and u = v = 0,

h1,1 = 1 + 0 + 0 = 1,

h1,2 = 20 + 2 · 64 + 1 + 0 + 0 = 149,

e = 2(h1,1 − h1,2) = −296.

Note that there are many examples with the same Euler number that
have different Hodge numbers in the table.
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h1,1 h2,1 e
1 149 −296 2 122 −240 2 102 −200 2 90 −176 2 86 −168
3 120 −234 3 99 −192 3 83 −160 3 75 −144 3 71 −136
3 67 −128 4 80 −152 4 73 −138 4 68 −128 4 64 −120
4 60 −112 4 56 −104 5 119 −228 5 95 −180 5 66 −122
5 65 −120 5 58 −106 5 57 −104 5 53 −96 6 76 −140
6 72 −132 6 64 −116 6 63 −114 6 60 −108 6 55 −98
6 54 −96 6 51 −90 6 50 −88 6 36 −60 7 94 −174
7 74 −134 7 65 −116 7 61 −108 7 61 −108 7 57 −100
7 53 −92 7 52 −90 7 49 −84 7 48 −82 7 47 −80
8 75 −134 8 63 −110 8 62 −108 8 59 −102 8 59 −102
8 54 −92 8 51 −86 8 50 −84 8 50 −84 8 46 −76
8 45 −74 8 44 −72 9 93 −168 9 73 −128 9 60 −102
9 57 −96 9 52 −86 9 51 −84 9 48 −78 9 48 −78
9 47 −76 9 44 −70 9 43 −68 9 42 −66 10 74 −128

10 62 −104 10 58 −96 10 50 −80 10 49 −78 10 46 −72
10 45 −70 10 44 −68 10 42 −64 10 41 −62 10 40 −60
11 72 −122 11 59 −96 11 59 −96 11 56 −90 11 51 −80
11 47 −72 11 47 −72 11 44 −66 11 43 −64 11 42 −62
11 39 −56 11 38 −54 12 57 −90 12 49 −74 12 48 −72
12 45 −66 12 44 −64 12 41 −58 12 40 −56 12 39 −54
12 37 −50 12 36 −48 13 71 −116 13 55 −84 13 46 −66
13 43 −60 13 42 −58 13 41 −56 13 38 −50 13 37 −48
13 35 −44 13 34 −42 14 56 −84 14 48 −68 14 44 −60
14 40 −52 14 39 −50 14 38 −48 14 36 −44 14 35 −42
14 32 −36 15 54 −78 15 45 −60 15 42 −54 15 41 −52
15 37 −44 15 36 −42 15 34 −38 15 33 −36 15 30 −30
16 43 −54 16 39 −46 16 38 −44 16 35 −38 16 34 −36
16 31 −30 16 28 −24 17 53 −72 17 41 −48 17 36 −38
17 35 −36 17 33 −32 17 32 −30 17 29 −24 18 42 −48
18 38 −40 18 34 −32 18 33 −30 18 30 −24 18 27 −18
19 40 −42 19 35 −32 19 32 −26 19 31 −24 19 28 −18
20 33 −26 20 32 −24 20 29 −18 20 26 −12 21 39 −36
21 31 −20 21 30 −18 21 27 −12 22 32 −20 22 28 −12
22 25 −6 23 30 −14 23 29 −12 23 26 −6 24 27 −6
24 24 0 25 29 −8 25 25 0 26 23 6 27 24 6
28 28 0 28 22 12 29 23 12 30 21 18 32 20 24

Table 1. Hodge numbers of Calabi–Yau 3-folds
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