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A STUDY ON THE TECHNIQUES OF ESTIMATING
THE PROBABILITY OF FAILURE

YoNG-KYUN LEE* AND DAE-SIK HWANG**

ABSTRACT. In this paper, we introduce the techniques of estimat-
ing the probability of failure in reliability analysis. The basic idea
of each technique is explained and drawbacks of these techniques
are examined.

1. Introduction

Reliability analysis is simply an area of calculating the probability
of failure. That is the multiple integration of joint probability density
function(PDF) in failure surface of limit state function. In general, it
is almost impossible to obtain the PDF of arbitrary random variables.
Even if the PDF is available, calculating the multiple integration is also
a difficult matter. Therefore, one approach for calculating the multiple
integration is to use analytical approximation methods. The represen-
tative approximation integration techniques for this approach are fast
probability integration technique and sampling technique.

The fast probability integration technique can be grouped into two
types, namely, first-order reliability method(FORM) and second-order
reliability method(SORM).

Another approximation integration technique is the sampling tech-
nique, such as the crude Monte Carlo sampling, the importance sampling
and the descriptive sampling.

In this study, we will introduce the techniques of estimating the prob-
ability of failure. First, the probability of failure is explained. Then, the
basic idea of the approximation of integration techniques is introduced
for the multiple integration. Also, drawbacks of these techniques are
found.
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2. Techniques of estimating the probability of failure

The first step in evaluating the reliability or probability of failure of
a structure is to decide on specific performance criteria and the relevant
parameters, called the basic variables X;, and the functional relation-
ships among them corresponding to each performance criterion. Math-
ematically, this relationship of performance function can be described
as

(21) 7 = g(Xl,XQ, s ,Xn).

The failure surface or the limit state of interest can then be defined
as Z = 0. This is the boundary between the safe and unsafe regions in
the design parameter space, and it also represents a state beyond which
a structure can no longer fulfill the function for which it was designed.
Assuming X; and X, are the two basic random variables, the failure
surface and the safe and unsafe regions are shown in Figure 1.

Using Eq. (2.1), we find that failure occurs when Z < 0. Therefore,
the probability of failure, P;, is given by the integral
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FIGURE 1. Probability of failure
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in which fx(z1,22, - ,x,) is the joint probability density function for
the basic random variables X1, Xo, -, X, and the integration is per-
formed over the failure region, that is, g(x) < 0. If the random variables
are statistically independent, then the joint probability density function
may be replaced by the product of the individual probability density
functions in the integral.

The limit state function plays an important role in the development of
structural reliability analysis methods. A limit state can be an explicit or
implicit function of the basic random variables, and it can be in simple or
complicated form. Reliability analysis techniques have been developed
corresponding to limit states of different types and complexity.

2.1. Fast probability integration techniques
2.1.1. Fast-order reliability method

Most of the earlier approximation used uncertain information rep-
resented only by their first two moments, i.e. its mean and standard
deviation.

C. A. Cornell [4] proposed two ideas : (a) the use of only first- and
second-moments to characterize the entire set of random variables, and
(b) the linearization by means of the Taylor series expansion of the limit
state function g(X) at some appropriate checking point. The measure
of reliability is given by the reliability or safety index

_9(X)
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FiGURE 2. Reliability index and probability of failure
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where g(X) is the mean value and o(g) is the standard deviation of g(X).
The method for evaluating 3 by expanding around the mean value of the
random variables is known as the mean value first order second-moment
method(MVFOSM). This approximation technique changed the original
complex probability problem into a simple problem. Figure 2 shows the
relation between reliability index and probability of failure.

A. M. Hasofer and L. C. Lind [7] proposed to linearize about a point
which lies on the failure surface and which corresponds to the maximum
likelihood of failure occurrence(HL method). This point is known as
the design point or most probable failure point(MPP). The reliability is
measured through the Hasofer-Lind safety index and it is defined as the
minimum distance from the origin to the failure surface as Figure 3.

R. Rackwitz and B. Fiessler [10] extended the HL method to include
random variable distribution information, which is denoted as the HL-
RF method. The HL-RF method requires the least amount of storage
and computation in each step. For most situations this method does not
only converges, but also converges faster.

But, three serious drawbacks of the FORM approach include : (1)
evaluation of reliability by linearizing the limit state function about the
mean values leads to erroneous estimates for limit state functions with
highly nonlinear, or for large coefficients of variation, (2) the reliability

\
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FiGure 3. FORM technique
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measure is distinct for different equivalent formulations of the same limit
state function and (3) when the limit state function is complex and
highly nonlinear, may converge slowly or even result in divergence.

2.1.2. Second-order reliability method

The SORM approach was first explored by B. Fiesslor et al. [5] using
various quadratic approximations. A simple closed-form solution for the
probability computation using a second-order approximation, Py, was
given by K. Breitung [2] using the theory of asymptotic approximations
as

n—1
(2:2) Pp=a(=p) [[(1+ pri) "7,

i=1
where k; denotes the principal curvatures of the limit state at the min-
imum distance point, and ( is the reliability index using the FORM.

L. Tvedt [11] developed alternative SORM formulations to take care
of these problems. Tvedt’s method uses a parabolic and a general
second-order approximation to the limit state, and it does not use as-
ymptotic approximations.

A. D. Kiureghian et al. [8] approximated the limit state by two
semiparabolas using curve-fitting at several discrete points around the
design point and used both sets of curvature in Eq. (2.2). This strategy
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FiGURE 4. SORM technique
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helps to avoid the computation of a full second-derivative matrix using
the original limit state and is efficient for problems with a large number
of random variables. Figure 4 shows the idea of the SORM. But, if the
value of reliability index is low, the SORM estimate could be inaccurate.
Also, the SORM approach could be obtained to the wrong curvature due
to the numerical noise and the computation time is increased when the
number of random variables increase.

2.2. Sampling techniques
2.2.1. Crude Monte Carlo sampling

The crude Monte Carlo sampling is one of the techniques which es-
timate the probability of failure. A basic concept of this technique is
shown in Figure 5.

This sampling selects the values of uncertain variables randomly ac-
cording to their probability distribution functions. As an example, for
uniform distribution any value within the valid range is selected by a
uniform random number generator. For normal distributions, random
values are selected, but values near the mean will be generated more
frequently than those at the extremes. It is known that if the value of
g(x) is less than zero, it indicates failure. Let ny be the number of sim-
ulation cycles when g(x) is less than zero and let N be the total number
of simulation cycles. Therefore, an estimate of the probability of failure

g(X), 4;)=0
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F1cURE 5. Crude Monte Carlo sampling
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can be expressed as

Pr= [ [ o0 < 0o
< LS gy <0~
N i=1 N

where I[-] is an indicator function which equals 1 if [-] is true and 0 if [-]
is false(see [1], [3], [13]).

But the crude Monte Carlo sampling approach requires huge samples
in order to obtain an accurate estimator and is therefore expensive.

2.2.2 Importance sampling

The basic idea of importance sampling is to concentrate the distri-
bution of sampling points in the region of most importance, the area
that mainly contributes to the failure probability, instead of spreading
them out evenly among the whole range of possible values of the basic
variables. One method to achieve this is illustrated in Figure 6.

For importance sampling, a new sampling PDF hx (x) is defined so as
to obtain samples in the desired region. hx(x) is known as the sampling
density function. The probability of failure is given by

FIGURE 6. Importance sampling



580 Yong-Kyun Lee and Dae-Sik Hwang

P, :/---/I[g(x) < 0] fX(z) i (x)dx

hx (x)
N
1 fx (xi)
~ — I 7 0 5
where N is the number of simulations and x;, (z1,22, - ,Zn); , is the
set of values of the basic random variables at the th simulation(see [6],

[9))-

For importance sampling, the accuracy of the estimate depends on
the choice of the sampling density function. But a clear choice method
is the situation not to exist and have the defect to be altered according
to the problem.

2.2.3 Descriptive sampling

The descriptive sampling was proposed in order to avoid the set vari-
ability in simulation studies by E. Saliby [12]. When using the standard
simple random sampling or crude Monte Carlo approach, two kinds of
variation are presented in a randomly generated sample - one is related
to the set of values and the other to their sequences. The set vari-
ability refers to the deviations between true sample parameters and the
corresponding assumed parameters for the input design variables. The
sequence variability refers to the lack of order of randomness for the
sample values.

The descriptive sampling is designed to remove, or at least to reduce
set variability. It is based on the deterministic selection of input sample
values and their random permutations. Symbolically, it follows that

descriptive sampling = deterministic set X random sequence
while
simple random sampling = random set X random sequence.

The only additional requirement to use the descriptive sampling in-
stead of the crude Monte Carlo sampling is to know, in advance, the
input sample size, which is related to a full size of simulation run. Once
the sample size is known at least approximately, the set of values are
defined for each input random variable X;, j = 1,2,--- ,n,, using the
inverse transform method, so that

X]’:F)}jl[(z—(]’f))/ns], i:1727"’an87

where
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Fy'(R), Re€(0,1)

is the inverse transform for the particular input distribution.

Completing the descriptive sampling generation process, each of the
ns sets of input values are used in a random sequence in each simulation
run. Now, unlike with simple random sampling, set values are the same
for all replicated runs in a simulation experiment. This random shuffling
process is easily accomplished by sampling, without replacement, the
descriptive set of values. Figure 7 shows the concept of the descriptive
sampling.

But there are cases where the sample size determination is not trivial.
For example, in a queue network simulation, with several service stations
and complex routing rules, it is difficult to predict the sample size for
the service times in each station. Another difficulty is that the sample
size may vary among runs only due to the input sample variability. This
error may lead to do the poor simulation results.

3. Conclusion
This paper introduced the techniques of estimating the probability

of failure. In the techniques of estimating the probability, there are fast
probability integration technique and sampling technique.
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FIGURE 7. Descriptive sampling
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The fast probability integration technique can be grouped into FORM
and SORM. The FORM represents the information on mean, variance,
and distribution of random variables in order to approximate reliability
index, which is the relative measure about the probability of failure.
The SORM that is an updated result of FORM includes additional in-
formation about the curvature of the limit state. However, the FORM
has the limit in the accuracy though it is efficient. And the SORM is a
complex method to calculate the curvature and has the numerical errors
sometimes.

Another approximation integration technique is the sampling tech-
nique, such as the crude Monte Carlo, the importance sampling and the
descriptive sampling. The crude Monte Carlo sampling is as well-known
as a sampling technique. A basic concept of the crude Monte Carlo is
simple and it can calculate the probability of failure without transfor-
mation about the limit state function. However, the crude Monte Carlo
sampling requires huge samples and is expensive.

The importance sampling is used for variance reduction of the esti-
mate of integration. It concentrates the distribution of sampling point
in the region of most importance. But the drawback of the importance
sampling is that the accuracy of the importance sampling estimate de-
pends on the choice of the sampling density function.

The descriptive sampling is based on a deterministic and purposive
selection of the input sample values. This sample value selection aims
to achieve the closest fit with the represented distribution, instead of
letting the sample histogram vary at random. However, because the
descriptive sampling is difficult to apply to complex simulations, sample
size is occasionally determined without thorough consideration by a user.
Sample size may vary between runs due to input sample variability,
leading to poor simulation results.

From this study, we should choose the suitable technique in reliability
analysis. Also, we need to study the method to overcome the drawback
of suggested techniques.
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