SOME CRITERIA OF FIBER PRODUCTS

Sang-Cho Chung*

Abstract. The purpose of this paper is to show that we give some criteria of fiber products.

1. Introduction

In this paper all rings are commutative with identity. The purpose of this paper is to show that we give some criteria of fiber product. Fiber product is one of the basic tools constructing Projective modules. Mandal[1] gave a criterion of fiber products (cf, Lemma 2.1 (2)). we have an extended criteror of fiber products in Theorem 2.2. We introduce the definition of the fiber product.

Definition 1.1. ([1], Definition 2.1.1.) Let R be a commutative ring with identity and let M, M_{1}, M_{2} and N be R-modules. Let $f_{1}: M_{1} \rightarrow N$ and $f_{2}: M_{2} \rightarrow N$ be homomorphisms of R-modules. The fiber product of M_{1} and M_{2} over N is a triple $\left(M, g_{1}, g_{2}\right)$, where $g_{1}: M \rightarrow M_{1}$ and $g_{2}: M \rightarrow M_{2}$ are R-linear maps such that $f_{1} g_{1}=f_{2} g_{2}$ and the triple is universal in the sense that given any other triple $\left(M^{\prime}, g_{1}^{\prime}, g_{2}^{\prime}\right)$ of this kind with $f_{1} g_{1}^{\prime}=f_{2} g_{2}^{\prime}$ there is a unique homomorphism $h: M^{\prime} \rightarrow M$ such that $g_{1} h=g_{1}^{\prime}$ and $g_{2} h=g_{2}^{\prime}$.

Let $f_{1}: M_{1} \rightarrow N$ and $f_{2}: M_{2} \rightarrow N$ be maps and let $p_{1}: M_{1} \oplus M_{2} \rightarrow$ M_{1} and $p_{2}: M_{1} \oplus M_{2} \rightarrow M_{2}$ be natural projections.

[^0]

Then we have that

$$
\operatorname{Im}\left(f_{1} p_{1}-f_{2} p_{2}\right)=\left\{f_{1}\left(m_{1}\right)-f_{2}\left(m_{2}\right):\left(m_{1}, m_{2}\right) \in M_{1} \oplus M_{2}\right\}
$$

where $\left(f_{1} p_{1}-f_{2} p_{2}\right)\left(m_{1}, m_{2}\right)=\left(f_{1} p_{1}\right)\left(m_{1}, m_{2}\right)-\left(f_{2} p_{2}\right)\left(m_{1}, m_{2}\right)$ for all $\left(m_{1}, m_{2}\right) \in M_{1} \oplus M_{2}$ and
$\operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)=\left\{\left(m_{1}, m_{2}\right) \in M_{1} \oplus M_{2}: f_{1}\left(m_{1}\right)=f_{2}\left(m_{2}\right)\right\}$.

2. Main Theorem

In the following Lemma 2.1(2), Mandal shows a criteria of fiber products.

Lemma 2.1. ([1] Proposition 2.1.1 and Proposition 2.1.2) Let R be a commutative ring with identity and M_{1}, M_{2}, N be R-modules. Let $f_{1}: M_{1} \rightarrow N$ and $f_{2}: M_{2} \rightarrow N$ be R-homomorphisms. Let

$$
M=\left\{\left(m_{1}, m_{2}\right) \in M_{1} \oplus M_{2}: f_{1}\left(m_{1}\right)=f_{2}\left(m_{2}\right)\right\}
$$

Then we have the following.
(1) $\left(M,\left.p_{1}\right|_{M},\left.p_{2}\right|_{M}\right)$ is a fiber product of M_{1} and M_{2} over N.
(2) The diagram

$$
\begin{array}{ccc}
M \xrightarrow[g_{1}]{ } & M_{1} \\
\downarrow g_{2} & & f_{1} \\
& \\
M_{2} \xrightarrow{f_{2}} & N
\end{array}
$$

is a fiber product diagram of M_{1} and M_{2} over N if and only if for each pair of elements $m_{1} \in M_{1}$ and $m_{2} \in M_{2}$ with $f_{1}\left(m_{1}\right)=$ $f_{2}\left(m_{2}\right)$ there is a unique element $m \in M$ with $g_{1}(m)=m_{1}$ and $g_{2}(m)=m_{2}$.
(3) If $\left(M^{\prime}, g_{1}, g_{2}\right)$ is a fiber product of M_{1} and M_{2} over N, then we have
(i) there is a unique isomorphism $h: M^{\prime} \rightarrow M$ such that $\left(\left.p_{1}\right|_{M}\right) h=$ g_{1} and $\left(\left.p_{2}\right|_{M}\right) h=g_{2}$.
(ii) $\operatorname{Ker}\left(g_{1}\right) \cap \operatorname{Ker}\left(g_{2}\right)=\{0\}$.

Proof. (1), (2) and (3)(i) follow from ([1], Prop. 2.1.1 and Prop. 2.1.2).
(3)(ii) Let $m \in \operatorname{Ker}\left(g_{1}\right) \cap \operatorname{Ker}\left(g_{2}\right)$. Then we have

$$
0=g_{1}(m)=\left.p_{1}\right|_{M}(h(m)) \text { and } 0=g_{2}(m)=\left.p_{2}\right|_{M}(h(m))
$$

Therefore

$$
h(m) \in \operatorname{Ker}\left(\left.p_{1}\right|_{M}\right) \cap \operatorname{Ker}\left(\left.p_{2}\right|_{M}\right)
$$

Since $\operatorname{Ker}\left(\left.p_{1}\right|_{M}\right) \cap \operatorname{Ker}\left(\left.p_{2}\right|_{M}\right)=\{(0,0)\}$, we have

$$
h(m)=(0,0)
$$

and then $m=0$.
In the next Theorem 2.2, we have more extended criteria of fiber products than Mandal's.

Theorem 2.2. Let M, M_{1}, M_{2}, N be R-modules. Let $g_{i}: M \rightarrow M_{i}$ for $i=1,2$ and $f_{i}: M_{i} \rightarrow N$ for $i=1,2$ be R-homomorphisms. Let

$$
p_{i}: M_{1} \oplus M_{2} \rightarrow M_{i} \text { for } i=1,2
$$

be natural projections. Consider the map

$$
\left(g_{1}, g_{2}\right): M \rightarrow M_{1} \oplus M_{2}
$$

where $\left(g_{1}, g_{2}\right)(m)=\left(g_{1}(m), g_{2}(m)\right)$ for all $m \in M$ and

$$
\left(f_{1} p_{1}-f_{2} p_{2}\right): M_{1} \oplus M_{2} \rightarrow N
$$

where $\left(f_{1} p_{1}-f_{2} p_{2}\right)\left(m_{1}, m_{2}\right)=\left(f_{1} p_{1}\right)\left(m_{1}, m_{2}\right)-\left(f_{2} p_{2}\right)\left(m_{1}, m_{2}\right)$ for all $\left(m_{1}, m_{2}\right) \in M_{1} \oplus M_{2}$. Then the following are equivalent.
(1) The following triple $\left(M, g_{1}, g_{2}\right)$

is a fiber product diagram of M_{1} and M_{2} over N.
(2) The following sequence
$0 \longrightarrow M \xrightarrow{\left(g_{1}, g_{2}\right)} M_{1} \oplus M_{2} \xrightarrow{f_{1} p_{1}-f_{2} p_{2}} \operatorname{Im}\left(f_{1} p_{1}-f_{2} p_{2}\right) \longrightarrow 0$ is exact.
(3) For the diagram in (1), we have
(i) $\left(g_{1}, g_{2}\right)$ is injective.
(ii) $\left\{\left(m_{1}, m_{2}\right) \in M_{1} \oplus M_{2}: f_{1}\left(m_{1}\right)=f_{2}\left(m_{2}\right)\right\} \subset \operatorname{Im}\left(g_{1}, g_{2}\right)$.

Proof. (1) \Rightarrow (2) Consider the sequence
$0 \longrightarrow M \xrightarrow{\left(g_{1}, g_{2}\right)} M_{1} \oplus M_{2} \xrightarrow{f_{1} p_{1}-f_{2} p_{2}} \operatorname{Im}\left(f_{1} p_{1}-f_{2} p_{2}\right) \longrightarrow 0 . \cdots(*)$
Clearly $f_{1} p_{1}-f_{2} p_{2}$ is surjective.
We show that $\left(g_{1}, g_{2}\right)$ is injective. Let $m \in \operatorname{Ker}\left(g_{1}, g_{2}\right)$. Then $(0,0)=$ $\left(g_{1}, g_{2}\right)(m)=\left(g_{1}(m), g_{2}(m)\right)$. That is

$$
g_{1}(m)=0 \text { and } g_{2}(m)=0
$$

Hence $m \in \operatorname{Ker}\left(g_{1}\right) \cap \operatorname{Ker}\left(g_{2}\right)$. By Lemma 2.1(3), we have

$$
m=0
$$

$\therefore\left(g_{1}, g_{2}\right)$ is injective.
For all $m \in M$, we have

$$
\begin{aligned}
\left(f_{1} p_{1}-f_{2} p_{2}\right)\left(\left(g_{1}, g_{2}\right)(m)\right) & =\left(f_{1} p_{1}-f_{2} p_{2}\right)\left(g_{1}(m), g_{2}(m)\right) \\
& =f_{1}\left(g_{1}(m)\right)-f_{2}\left(g_{2}(m)\right)=0
\end{aligned}
$$

since $f_{1} g_{1}=f_{2} g_{2}$. Hence we have $\operatorname{Im}\left(g_{1}, g_{2}\right) \subset \operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)$.
Let $\left(m_{1}, m_{2}\right) \in \operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)$. Then we have

$$
0=\left(f_{1} p_{1}-f_{2} p_{2}\right)\left(m_{1}, m_{2}\right)=f_{1}\left(m_{1}\right)-f_{2}\left(m_{2}\right)
$$

Therefore

$$
f_{1}\left(m_{1}\right)=f_{2}\left(m_{2}\right)
$$

By Lemma 2.1, there is an element $m \in M$ such that

$$
g_{1}(m)=m_{1} \text { and } g_{2}(m)=m_{2}
$$

Hence

$$
\left(m_{1}, m_{2}\right)=\left(g_{1}(m), g_{2}(m)\right)=\left(g_{1}, g_{2}\right)(m)
$$

We have $\operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right) \subset \operatorname{Im}\left(g_{1}, g_{2}\right)$.

$$
\therefore \operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)=\operatorname{Im}\left(g_{1}, g_{2}\right)
$$

Thus the sequence $(*)$ is exact.
$(2) \Rightarrow(1)$ Suppose that the sequence

$$
0 \longrightarrow M \xrightarrow{\left(g_{1}, g_{2}\right)} M_{1} \oplus M_{2} \xrightarrow{f_{1} p_{1}-f_{2} p_{2}} \operatorname{Im}\left(f_{1} p_{1}-f_{2} p_{2}\right) \longrightarrow 0
$$

is exact.
For all $m \in M$, we have

$$
\begin{aligned}
0=\left(f_{1} p_{1}-f_{2} p_{2}\right)\left(g_{1}, g_{2}\right)(m) & =\left(f_{1} p_{1}-f_{2} p_{2}\right)\left(g_{1}(m), g_{2}(m)\right) \\
& =f_{1}\left(g_{1}(m)\right)-f_{2}\left(g_{2}(m)\right)
\end{aligned}
$$

Then we have

$$
f_{1}\left(g_{1}(m)\right)=f_{2}\left(g_{2}(m)\right)
$$

$$
\therefore f_{1} g_{1}=f_{2} g_{2} .
$$

Next we show that the triple (M, g_{1}, g_{2}) is universal. Let ($M^{\prime}, g_{1}^{\prime}, g_{2}^{\prime}$) be any triple with $f_{1} g_{1}^{\prime}=f_{2} g_{2}^{\prime}$.

For each $m^{\prime} \in M^{\prime}$, we have

$$
f_{1}\left(g_{1}^{\prime}\left(m^{\prime}\right)\right)=f_{2}\left(g_{2}^{\prime}\left(m^{\prime}\right)\right) .
$$

Hence we have $\left(g_{1}^{\prime}\left(m^{\prime}\right), g_{2}^{\prime}\left(m^{\prime}\right)\right) \in \operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)=\operatorname{Im}\left(g_{1}, g_{2}\right)$. There is an element $m \in M$ such that

$$
\left(g_{1}, g_{2}\right)(m)=\left(g_{1}^{\prime}\left(m^{\prime}\right), g_{2}^{\prime}\left(m^{\prime}\right)\right) .
$$

That is

$$
g_{1}(m)=g_{1}^{\prime}\left(m^{\prime}\right) \text { and } g_{2}(m)=g_{2}^{\prime}\left(m^{\prime}\right) .
$$

Define a map

$$
h: M^{\prime} \rightarrow M
$$

by $h\left(m^{\prime}\right)=m$, where $m^{\prime} \in M^{\prime}$ and $m \in M$ such that

$$
\left(g_{1}^{\prime}\left(m^{\prime}\right), g_{2}^{\prime}\left(m^{\prime}\right)\right)=\left(g_{1}(m), g_{2}(m)\right) .
$$

Since (g_{1}, g_{2}) is injective, h is a well-defined R-homomorphism. Furthermore, for all $m^{\prime} \in M^{\prime}$.

$$
g_{i}\left(h\left(m^{\prime}\right)\right)=g_{i}(m)=g_{i}^{\prime}\left(m^{\prime}\right) \text { for } i=1,2 .
$$

Thus we have

$$
g_{1} h=g_{1}^{\prime}, \quad g_{2} h=g_{2}^{\prime} .
$$

Assume that there is an R-homomorphism $h^{\prime}: M^{\prime} \rightarrow M$ such that

$$
g_{1} h^{\prime}=g_{1}^{\prime}, \quad g_{2} h^{\prime}=g_{2}^{\prime} .
$$

Then we have, for all $m^{\prime} \in M^{\prime}$

$$
g_{i}\left(h\left(m^{\prime}\right)\right)=g_{i}^{\prime}\left(m^{\prime}\right)=g_{i}\left(h^{\prime}\left(m^{\prime}\right)\right) \text { for } i=1,2 .
$$

Therefore

$$
h\left(m^{\prime}\right)-h^{\prime}\left(m^{\prime}\right) \in \operatorname{Ker}\left(g_{1}\right) \cap \operatorname{Ker}\left(g_{2}\right) .
$$

On the other hand, since $\left(g_{1}, g_{2}\right)$ is injective, we have $\operatorname{Ker}\left(g_{1}\right) \cap \operatorname{Ker}\left(g_{2}\right)=$ $\{0\}$ and then

$$
h\left(m^{\prime}\right)-h^{\prime}\left(m^{\prime}\right)=0
$$

Thus we have

$$
h=h^{\prime} .
$$

Therefore $\left(M, g_{1}, g_{2}\right)$ is a fiber product of M_{1} and M_{2} over N.
$(2) \Rightarrow(3)$ Clear.
$(3) \Rightarrow(2)$ Since $\operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)=\left\{\left(m_{1}, m_{2}\right) \in M_{1} \oplus M_{2}: f_{1}\left(m_{1}\right)=\right.$ $\left.f_{2}\left(m_{2}\right)\right\}$, it suffices to show that

$$
\operatorname{Im}\left(g_{1}, g_{2}\right) \subset K e r\left(f_{1} p_{1}-f_{2} p_{2}\right)
$$

But it follows that the diagram is commutative.
Corollary 2.3. ([1], Example 2.1.3) With the same notation as in Theorem 2.2, let S be a multiplicative closed subset of R. If

is a fiber product diagram of R-modules, then

is a fiber product diagram of R_{S}-modules.
Proof. By Theorem 2.2, we have the exact sequence

$$
0 \longrightarrow M \longrightarrow M_{1} \oplus M_{2} \longrightarrow \operatorname{Im}\left(f_{1} p_{1}-f_{2} p_{2}\right) \longrightarrow 0
$$

Then since $\left(M_{1} \oplus M_{2}\right)_{S} \cong M_{1 S} \oplus M_{2 S}$, we have the following exact sequence
$0 \longrightarrow M_{S} \longrightarrow M_{1 S} \oplus M_{2 S} \longrightarrow \operatorname{Im}\left(f_{1 S} p_{1 S}-f_{2 S} p_{2 S}\right) \longrightarrow 0$.
Hence the conclusion follows from Theorem 2.2.
Definition 2.4. Let R, S, T, U be commutative rings with identity. Let $g_{1}: R \rightarrow S, g_{2}: R \rightarrow T, f_{1}: S \rightarrow U$ and $f_{2}: T \rightarrow U$ be ring
homomorphisms. The fiber product of commutative rings

$$
T \xrightarrow{f_{2}} U
$$

is defined as in Definition 1.1.
Next we define the fiber product for commutative rings.
Theorem 2.5. Let R, S, T, U be commutative rings with identity. Let $g_{1}: R \rightarrow S, g_{2}: R \rightarrow T, f_{1}: S \rightarrow U$ and $f_{2}: T \rightarrow U$ be ring maps.

Then the following

is a fiber product diagram of rings if and only if, for the ring homomorphism

$$
\left(g_{1}, g_{2}\right): R \rightarrow S \oplus T
$$

defined by $\left(g_{1}, g_{2}\right)(r)=\left(g_{1}(r), g_{2}(r)\right)$ where $r \in R$ and the ring homomorphism

$$
f_{1} p_{1}-f_{2} p_{2}: S \oplus T \rightarrow \operatorname{Im}\left(f_{1} p_{1}-f_{2} p_{2}\right)
$$

defined by $\left(f_{1} p_{1}-f_{2} p_{2}\right)(s, t)=f_{1}(s)-f_{2}(t)$ where $(s, t) \in S \oplus T$, we have
(i) $\left(g_{1}, g_{2}\right)$ is injective.
(ii) $\operatorname{Im}\left(g_{1}, g_{2}\right)=\operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)$ and therefore $R \cong \operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)$.

Proof: The proof is similar to Theorem 2.2.
Corollary 2.6. We have the following.
(1) (See [1] Example 2.1.1) Let I, J be ideals of R. Then

is a fiber product diagram of rings.
(2) (See [1] Example 2.1.2) Let s, t be elements of R such that $R_{s}+$ $R_{t}=R$. Then

is a fiber product diagram of R-modules.
Proof. (1) Consider a ring homomorphism

$$
\left(g_{1}, g_{2}\right): R / I \cap J \rightarrow R / I \oplus R / J
$$

and a map

$$
f_{1} p_{1}-f_{2} p_{2}: R / I \oplus R / J \rightarrow \operatorname{Im}\left(f_{1} p_{1}-f_{2} p_{2}\right)
$$

Then clearly $\left(g_{1}, g_{2}\right)$ is injective.
For all $r+I \cap J \in R / I \cap J$,

$$
\begin{aligned}
& \left(f_{1} p_{1}-f_{2} p_{2}\right)\left(g_{1}, g_{2}\right)(r+I \cap J) \\
= & \left(f_{1} p_{1}-f_{2} p_{2}\right)\left(g_{1}(r), g_{2}(r)\right) \\
= & \left(f_{1} p_{1}-f_{2} p_{2}\right)(r+I, r+J)=f_{1}(r+I)-f_{2}(r+J) \\
= & r+(I+J)-r+(I+J) \\
= & 0+(I+J)
\end{aligned}
$$

Thus $\operatorname{Im}\left(g_{1}, g_{2}\right) \subset \operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)$.
Let $(r+I, s+J) \in \operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)$. Then

$$
r-s \in I+J
$$

There is $i \in I, j \in J$ such that

$$
r+i=s+j
$$

Let $u=r+i \in R$. Then we have

$$
\begin{aligned}
\left(g_{1}, g_{2}\right)(u+I \cap J) & =(u+I, u+J)=(r+i+I, r+i+J) \\
& =(r+i+I, s+j+J)=(r+I, s+J)
\end{aligned}
$$

Therefore $\operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right) \subset \operatorname{Im}\left(g_{1}, g_{2}\right)$ and then

$$
\operatorname{Ker}\left(f_{1} p_{1}-f_{2} p_{2}\right)=\operatorname{Im}\left(g_{1}, g_{2}\right)
$$

Hence the conclusion follows from Theorem 2.5.
(2) Consider the following sequence
$0 \longrightarrow M \xrightarrow{\left(g_{s}, g_{t}\right)} M_{s} \oplus M_{t} \xrightarrow{f_{s} p_{s}-f_{t} p_{t}} \operatorname{Im}\left(f_{s} p_{s}-f_{t} p_{t}\right) \longrightarrow 0$.
Clearly $f_{s} p_{s}-f_{t} p_{t}$ is surjective.

Let $m \in \operatorname{Ker}\left(g_{s}, g_{t}\right)$. Then we have

$$
(0,0)=\left(g_{s}, g_{t}\right)(m)=(m / 1, m / 1) \in M_{s} \oplus M_{t}
$$

Hence there is non-zero integer u, v such that

$$
s^{u} m=0 \text { and } t^{v} m=0
$$

Since $R s^{u}+R t^{v}=R$, there is elements $a, b \in R$ such that

$$
a s^{u}+b t^{v}=1 .
$$

Then

$$
m=\left(a s^{u}+b t^{v}\right) m=a s^{u} m+b t^{v} m=0 .
$$

Therefore $\left(g_{s}, g_{t}\right)$ is injective.
Next for all $m \in M$,

$$
\begin{aligned}
& \left(f_{s} p_{s}-f_{t} p_{t}\right)\left(g_{s}, g_{t}\right)(m)=\left(f_{s} p_{s}-f_{t} p_{t}\right)\left(g_{s}(m), g_{t}(m)\right) \\
& \quad=\left(f_{s} p_{s}-f_{t} p_{t}\right)(m / 1, m / 1)=m / 1-m / 1=0
\end{aligned}
$$

Thus $\operatorname{Im}\left(g_{s}, g_{t}\right) \subset \operatorname{Ker}\left(f_{s} p_{s}-f_{t} p_{t}\right)$.
Let $\left(m / s^{u}, m^{\prime} / t^{v}\right) \in \operatorname{Ker}\left(f_{s} p_{s}-f_{t} p_{t}\right)$. Then we have

$$
\begin{aligned}
0 & =\left(f_{s} p_{s}-f_{t} p_{t}\right)\left(m / s^{u}, m^{\prime} / t^{v}\right) \\
& =f_{s}\left(m / s^{u}\right)-f_{t}\left(m^{\prime} / t^{v}\right) \\
& =t^{u} m /(s t)^{u}-s^{v} m^{\prime} /(s t)^{v} \\
& =\left[(s t)^{v} t^{u} m-(s t)^{u} s^{v} m^{\prime}\right] /(s t)^{u+v}
\end{aligned}
$$

Hence there is a non-zero integer i such that

$$
\begin{aligned}
& (s t)^{i}\left((s t)^{v} t^{u} m-(s t)^{u} s^{v} m^{\prime}\right)=0 . \\
& \therefore s^{i+v} t^{i+u} t^{v} m=s^{i+v} t^{i+u} s^{u} m^{\prime} .
\end{aligned}
$$

Since $R s^{i+u+v}+R t^{i+u+v}=R$, there is elements $x, y \in R$ such that

$$
\begin{aligned}
& x s^{i+u+v}+y t^{i+u+v}=1 \\
s^{i+v} m & =s^{i+v} m\left(x s^{i+u+v}+y t^{i+u+v}\right) \\
& =s^{2 i+u+2 v} x m+s^{i+v} t^{i+u} t^{v} y m \\
& =s^{2 i+u+2 v} x m+s^{i+v} t^{i+u} s^{u} y m^{\prime} \\
& =s^{i+v} s^{u}\left(s^{i+v} x m+t^{i+u} y m^{\prime}\right)
\end{aligned}
$$

Hence we have

$$
\left(s^{i+v} x m+t^{i+u} y m^{\prime}\right) / 1=m / s^{u} \text { in } M_{s} .
$$

On the other hand,

$$
\begin{aligned}
t^{i+u} m^{\prime} & =t^{i+u} m^{\prime}\left(x s^{i+u+v}+y t^{i+u+v}\right) \\
& =t^{i+u} s^{i+v} s^{u} x m^{\prime}+t^{2 i+2 u+v} y m^{\prime} \\
& =t^{i+u} s^{i+v} t^{v} x m+t^{2 i+2 u+v} y m^{\prime} \\
& =t^{i+u} t^{v}\left(s^{i+v} x m+t^{i+u} y m^{\prime}\right) .
\end{aligned}
$$

Hence we have

$$
\left(s^{i+v} x m+t^{i+u} y m^{\prime}\right) / 1=m^{\prime} / t^{v} \text { in } M_{t} .
$$

Let $n=s^{i+v} x m+t^{i+u} y m^{\prime} \in M$. Then we have

$$
\begin{aligned}
\left(g_{s}, g_{t}\right)(n) & =\left(g_{s}, g_{t}\right)\left(s^{i+v} x m+t^{i+u} y m^{\prime}\right) \\
& =\left(g_{s}\left(s^{i+v} x m+t^{i+u} y m^{\prime}\right), g_{t}\left(s^{i+v} x m+t^{i+u} y m^{\prime}\right)\right) \\
& =\left(s^{i+v} x m+t^{i+u} y m^{\prime} / 1, s^{i+v} x m+t^{i+u} y m^{\prime} / 1\right) \\
& =\left(m / s^{u}, m / t^{v}\right)
\end{aligned}
$$

Thus $\operatorname{Ker}\left(f_{s} p_{s}-f_{t} p_{t}\right) \subset \operatorname{Im}\left(g_{s}, g_{t}\right)$ and then

$$
\operatorname{Ker}\left(f_{s} p_{s}-f_{t} p_{t}\right)=\operatorname{Im}\left(g_{s}, g_{t}\right)
$$

Hence the conclusion follows from Theorem 2.2.

References

[1] Satya Mandal, Projective Modules and Complete Intersections, Lecture Notes in Mathematics 1672, Springer, 1997.

Department of Mathematics
Chungnam National University
Daejeon 305-764, Republic of Korea
E-mail: scchung@cnu.ac.kr

[^0]: Received October 16, 2008; Accepted November 20, 2008.
 2000 Mathematics Subject Classification: Primary 13C99.
 Key words and phrases: Fiber Product.

