TAME DIFFEOMORPHISMS WITH C¹-STABLE PROPERTIES

Manseob Lee*

ABSTRACT. Let f be a diffeomorphisms of a compact C^{∞} manifold, and let p be a hyperbolic periodic point of f. In this paper, we prove that if generically, f is tame diffeomorphims then the following conditions are equivalent: (i) f is Ω -stable, (ii) f has the C^1 -stable shadowing property (iii) f has the C^1 -stable inverse shadowing property.

1. Introduction

Let M be a closed C^{∞} manifold, and let $\mathrm{Diff}(M)$ be the space of diffeomorphisms of M endowed with the C^1 -topology. Denote by d the distance on M induced from a Riemannian metric $\|\cdot\|$ on the tangent bundle TM. In [2], the authors proved that if generically, f is tame diffeomorphisms then the following two conditions are equivalent:

- \cdot f is hyperbolic (i.e., structurally stable, or equivalently Axiom A with the transversality condition)
- $\cdot f$ is shadowable.

DEFINITION 1.1. [1] Let $f \in \text{Diff}(M)$. Then f is tame diffeomorphisms if f satisfies the following conditions:

$$\Omega(f) = \bigcup_{i=1}^{n} \Lambda(p_i), \text{ where } \Lambda(p_i) = H_f^T(p_i) \text{ for } i = 1, \dots, n;$$

$$\Lambda(p_i) \cap \Lambda(p_j) = \phi, \text{ for } i \neq j;$$

Received October 07, 2008; Accepted November 20, 2008.

²⁰⁰⁰ Mathematics Subject Classification; Primary 37B20, 37C29; Secondary 37D20.

Key words and phrases: homoclinic class, C^1 -stable shadowing, C^1 -stable inverse shadowing, generic, chain component, hyperbolic.

 $\Lambda(p_i)$ are transitive sets, for $i = 1, \dots, n$, where every p_i are hyperbolic saddle of f.

In this paper, we study that if generically, f is tame diffeomorphisms then the following notions are equivalent; Ω stable, C^1 -stable shadowing property and C^1 -stable inverse shadowing property.

Let us be more precise. Let X be a compact metric space with metric d, and let Z(X) denote the space of homoemorphisms on X with the C^0 -metric d_0 . Let $f \in Z(X)$. For $\delta > 0$, a sequence of points $\{x_i\}_{i=a}^b$ in X is called a δ -pseudo-orbit of f if $d(f(x_i), x_{i+1}) < 0$ δ for all $a \leq i \leq b-1$. For given $x, y \in X$, we write $x \leftrightarrow y$ if for any $\delta > 0$, there is a δ -pseudo-orbit $\{x_i\}_{i=a}^b (a < b)$ of f such that $x_a = x$ and $x_b = y$. The set of points $\{x \in X : x \longleftrightarrow x\}$ is called the *chain* recurrent set of f and is denoted by $\mathcal{R}(f)$. If we denote the set of periodic points of f by P(f), then $P(f) \subset \Omega(f) \subset \mathcal{R}(f)$. Here $\Omega(f)$ is the non-wondering set of f. The relation \iff induces on $\mathcal{R}(f)$ an equivalence relation, whose classes are called *chain components* of f. Let $\Lambda \subset X$ be a closed f-invariant set. We say that $f|_{\Lambda}$ has the shadowing property if for every $\epsilon > 0$ there is $\delta > 0$ such that for any δ -pseudo-orbit $\{x_i\}_{i=a}^b \subset \Lambda$ of $f(-\infty \le a < b \le \infty)$, there is $y \in M$, f- ϵ -shadowing the pseudo-orbit, i.e., $d(f^i(y), x_i) < \epsilon$ for all $a \leq i \leq b-1$. This property does not depend on the metric used and is preserved under topological conjugacy. Note that $f|_{\Lambda}$ has the shadowing property if and only if $f^{n}|_{\Lambda}$ has the shadowing property for $n \in \mathbf{Z} \setminus \{0\}$.

Let $X^{\mathbf{Z}}$ be the compact metric space of all two sided sequences $\xi = \{x_k : k \in \mathbf{Z}\}$ in X, endowed with the product topology. For a constant $\delta > 0$ and $f \in Z(X)$, let $\Phi_f(\delta)$ denote the set of all δ -pseudo orbits of f. A mapping $\varphi : X \to \Phi_f(\delta) \subset X^{\mathbf{Z}}$ satisfying $\varphi(x)_0 = x$. $x \in X$, is said to be a δ -method for f. For convenience, write $\varphi(x)$ for $\{\varphi(x)_k\}_{k \in \mathbf{Z}}$. Say that φ is continuous δ -method for f if φ is continuous. The set of all δ -methods[respectively, continuous δ -methods] for f will be denoted by $\mathcal{T}_0(f, \delta)$ [respectively, $\mathcal{T}_c(f, \delta)$]. Every $g \in Z(X)$ with $d_0(f,g) < \delta$ induces a continuous δ -method $\varphi_g : X \to X^{\mathbf{Z}}$ for f by defining $\varphi_g(x) = \{g^k(x) : k \in \mathbf{Z}\}$. Let $\mathcal{T}_h(f, \delta)$ denote the set of all continuous δ -methods for f which we introduced by homeomorphisms g on X with $d_0(f,g) < \delta$. Let $\Lambda \subset X$ be a closed f-invariant set. We say that $f|_{\Lambda}$ has the inverse

shadowing property with respect to a class \mathcal{T}_{α} ($\alpha = 0, c, h, d$) if for every $\epsilon > 0$ there is $\delta > 0$ such that for any δ -method $\varphi \in \mathcal{T}_{\alpha}(f, \delta)$, there is a map $s : \Lambda \to M$ satisfies $d(f^n(x), \varphi(s(x)) < \epsilon$ for all $x \in \Lambda$ and all $n \in \mathbf{Z}$. Note that $f|_{\Lambda}$ has the inverse shadowing property with respect to $\mathcal{T}_{\alpha}(\alpha = 0, c, h)$ if and only if $f^n|_{\Lambda}$ has the inverse shadowing property with respect to \mathcal{T}_{α} for $n \in \mathbf{Z} \setminus \{0\}$ (see, [7]).

Let M be as before, and let $f \in \text{Diff}(M)$. It is well known that if p is a hyperbolic periodic point of f with period k then the sets

$$W^{s}(p) = \{x \in M : f^{kn}(x) \to p \text{ as } n \to \infty\} \text{ and}$$
$$W^{u}(p) = \{x \in M : f^{-kn}(x) \to p \text{ as } n \to \infty\}$$

are C^1 -injectively immersed submanifolds of M. Then $W^s(p, f)$ is called *stable manifolds* and $W^u(p, f)$ is called *unstable manifold* of p with respect to f.

A point $x \in W^s(p) \cap W^u(p)$ is called a homoclinic point of f associated to p, and it is said to be a transversal homoclinic point of f if the above intersection is transversal at x; i.e., $x \in W^s(p) \overline{\cap} W^u(p)$. The closure of the transversal homoclinic points of f associated to p is called the transversal homoclinic class of f associated to p, and it is denoted by $H_f^T(p)$. It is clear that $H_f^T(p)$ is compact f-invariant sets. Transversal homoclinic classes are the natural candidates to replace hyperbolic basic sets in non-hyperbolic theory.

Let $f \in \text{Diff}(M)$, and let $\Lambda \subset M$ be a closed f-invariant set. We say that Λ is *locally maximal* if there is a compact neighborhood U of Λ such that $\bigcap_{n \in \mathbb{Z}} f^n(U) = \Lambda$.

DEFINITION 1.2. We say that an f-invariant set Λ has the C^1 -stable shadowing property/resp. C^1 -stable inverse shadowing property/ if Λ is locally maximal in U and there is a C^1 -neighborhood of $\mathcal{U}(f)$ of f such that for any $g \in \mathcal{U}(f)$, $g|_{\Lambda_g}$ has the shadowing property [resp. inverse shadowing property]. Here $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ and which is called the *continuation* of $\Lambda_f = \Lambda = \bigcap_{g \in \mathbb{Z}} f^n(U)$.

Theorem 1.3. Generically, f is tame then the following three conditions are equivalent:

- (a) f is Ω -stable.
- (b) f has the C^1 -stable shadowing property,
- (c) f has the C^1 -stable inverse shadowing property.

Let f satisfy Ω -stable. Then it well-known that f satisfies both Axiom A and the no-cycle condition. Thus we know the following facts. Denote by $\mathcal{F}(M)$ the set of $f \in \mathrm{Diff}(M)$ such that there is a C^1 -neighborhood $\mathcal{U}(f)$ of f with property that every $p \in P(g)(g \in \mathcal{U}(f))$ is hyperbolic. It is proved by Hayashi [6] that $f \in \mathcal{F}(M)$ if and only if f satisfies both Axiom A and no-cycle condition. Therefore, we are going to make using this result to prove. We prove that the equivalence (a) \Leftrightarrow (c) and (a) \Leftrightarrow (b).

2. Proof of the Theorem

Let M be as before, and let $f \in \text{Diff}(M)$. The following so-called Franks' lemma will play essential roles in our proofs.

LEMMA 2.1. Let $\mathcal{U}(f)$ be any given C^1 -neighborhood of f. Then there exists $\epsilon > 0$ and a C^1 -neighborhood $\mathcal{U}_0(f) \subset \mathcal{U}(f)$ of f such that for given $g \in \mathcal{U}_0(f)$, a finite set $\{x_1, x_2, \dots, x_N\}$, a neighborhood U of $\{x_1, x_2, \dots, x_N\}$ and linear maps $L_i : T_{x_i}M \to T_{g(x_i)}M$ satisfying $||L_i - D_{x_i}g|| \le \epsilon$ for all $1 \le i \le N$, there exists $\widehat{g} \in \mathcal{U}(f)$ such that $\widehat{g}(x) = g(x)$ if $x \in \{x_1, x_2, \dots, x_N\} \cup (M \setminus U)$ and $D_{x_i}\widehat{g} = L_i$ for all $1 \le i \le N$.

Proof. See [[5], Lemma 1.1].
$$\Box$$

Given an open subset \mathcal{U} of Diff(M), a subset \mathcal{G} of \mathcal{U} is said to be residual in \mathcal{U} if \mathcal{G} contains a countable intersection of open and dense subsets of \mathcal{U} . If P is a property of $f \in \mathcal{U}$, we say that this property is generic in \mathcal{U} if $\{f \in \mathcal{U} : f \text{ satisfies } P\}$ is residual in \mathcal{U} . From [3], we know that generically $H_f^T(p) = C_f(p)$ for any hyperbolic saddle point $p \in M$.

LEMMA 2.2. [3] There exists a residual subset \mathcal{G}_1 of Diff(M) such that if $f \in \mathcal{G}_1$ then $H_f^T(p) = C_f(p)$, where p is a hyperbolic periodic point of f.

From [1], the author mentioned tame diffeomorphisms which is shortly, if generically, f admits a spectral decomposition then there exists an open neighborhood $\mathcal{U}(f)$ of f such that if $g \in \mathcal{U}(f)$, then g admits a spectral decomposition. And so, in [2] the authors consider the following lemma.

LEMMA 2.3. [2] There exists a residual subset $\mathcal{G}_2 \subset \mathrm{Diff}(M)$ such that $f \in \mathcal{G}_2$ then f is tame.

REMARK 2.4. Note that the identity map id of the unit interval I and a rotation map ρ of the unit circle S^1 do not have the shadowing property[resp. inverse shadowing property].

LEMMA 2.5. Let Λ be closed f-invariant set. Suppose that Λ has the C^1 -stable shadowing property [resp. inverse shadowing property] for f. Then there exists a C^1 -neighborhood $\mathcal{V}(f) \subset \mathcal{U}(f)$ of f such that for each $g \in \mathcal{V}(f)$, every $q \in \Lambda_g \cap P(g)$ is hyperbolic, where $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ for a small neighborhood U of Λ .

Proof. See the proof of [[8], Lemma 5.5 and [10], Lemma 3.2]. \square

PROPOSITION 2.6. Let $f \in \mathcal{G}_1 \cap \mathcal{G}_2$. Then f has the C^1 -stable shadowing property if and only if f is Ω -stable.

Proof. We show that "only if part"; Let $f \in \mathcal{G}_1 \cap \mathcal{G}_2$. Then f is tame and $H_f^T(p) = C_f(p)$, where p is a hyperbolic saddle of f. Since f is tame and $H_f^T(p) = C_f(p)$, we know that $\Omega(f) = \Lambda(p_1) \cup \Lambda(p_2) \cup \cdots \cup \Lambda(p_n)$, where $\Lambda(p_i) = H_f^T(p_i)$ and p_i are hyperbolic saddle for $i = 1, \dots, n$. And so, we will show that for fixed i, $H_f^T(p_i) = C_f(p_i)$ is hyperbolic. Then for each i, $\Lambda(p_i)$ are hyperbolic and f is Ω -stable. Let $\Lambda(p_i) = \Lambda$ for fixed i and let Λ be a compact f-invariant set which has the C^1 -stable shadowing property. Then there are a compact neighborhood U of Λ and a C^1 -neighborhood U(f) of f and such that for any $g \in \mathcal{U}(f)$, $g|_{\Lambda_g}$ has the shadowing property, where $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$. Since f is tame, we have $\Lambda_g(p_g) = H_g^T(p_g)$. By [8](see, Theorem 3) Λ is hyperbolic. And so, for each i, $\Lambda(p_i)$ are hyperbolic. This means for all basic sets are hyperbolic. Thus $f \in \mathcal{F}(M)$ and so it is Axiom Λ and the no-cycle condition. Thus f is Ω -stable.

Next we show that "if" part; We well-known that if f is Ω -stable then it satisfies both Axiom A and no-cycle condition. And so we show that f satisfies both Axiom A and the no-cycle condition. Thus, we may assume that f satisfies both Axiom A and the no-cycle condition. Then $\Omega(f) = \overline{P(f)}$ is hyperbolic. And so $\overline{P(f)}$ is locally maximal; i.e., there exist a compact neighborhood U of $\Omega(f)$ such that $\Omega(f) = \bigcap_{n \in \mathbb{Z}} f^n(U)$. By the stability of locally maximal

hyperbolic sets, we can take a compact neighborhood U of $\Omega(f)$ and a C^1 -neighborhood U(f) of f such that for any $g \in U(f)$, $f|_{\Omega(f)}$ and $g|_{\Omega(g)}$ are conjugate, where $\Omega(g) = \bigcap_{n \in \mathbf{z}} g^n(U)$. Since $\Omega(f)$ is hyperbolic for f, $f|_{\Omega(f)}$ has the C^1 -stable shadowing property. Thus $g|_{\Omega(g)}$ has the shadowing property. This completes the proof of Proposition 2.5.

PROPOSITION 2.7. Let $f \in \mathcal{G}_1 \cap \mathcal{G}_2$. Then f has the C^1 -stable inverse shadowing property if and only if f is Ω -stable.

Proof. This proof is similarly to Proposition 2.5. \square

Therefore by Proposition 2.5 and Proposition 2.6, we can direct to prove that Theorem 1.1. And so we get the following result which obtained by Lemma 2.2 and [8, 10].

COROLLARY 2.8. Generically, let p be a hyperbolic periodic point of f. Then C^1 -stable shadowing property on chain component $C_f(p)$ if and only if C^1 -stable inverse shadowing property on chain component $C_f(p)$.

Proof. First we prove that "only if" part. Suppose $C_f(p)$ is C^1 -stable shadowing property. Then there exist a compact neighborhood U of $C_f(p)$ and a C^1 -neighborhood U(f) of f such that for any $g \in \mathcal{U}(f)$ $g|_{\Lambda_g}$ has the shadowing property, where $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$. By [8], $C_f(p) = H_f^T(p)$ and $C_f(p)$ is hyperbolic. And so, $C_f(p)$ has the inverse shadowing property. By [12], $C_f(p)$ is locally maximal. Therefore, by the local stability hyperbolic invariant set theorem, $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ and $f|_{C_f(p)}$ is conjugate $g|_{\Lambda_g}$. Thus Λ_g has the inverse shadowing property.

Next, we prove that "if" part. Let $f \in \mathcal{G}$. Then by Lemma 2.2, $C_f(p) = H_f^T(p)$. Suppose $C_f(p)$ is C^1 -stable inverse shadowing property. Then there exist a compact neighborhood U of $C_f(p)$ and a C^1 -neighborhood U(f) of f such that for any $g \in U(f)$ $g|_{\Lambda_g}$ has the inverse shadowing property, where $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$. By [10], generically, $C_f(p)$ is hyperbolic. And so, $C_f(p)$ has the shadowing property. By [12], $C_f(p)$ is locally maximal. Therefore, by the local stability hyperbolic invariant set theorem, $\Lambda_g = \bigcap_{n \in \mathbb{Z}} g^n(U)$ and $f|_{C_f(p)}$ is conjugate $g|_{\Lambda_g}$. Thus Λ_g has the shadowing property. This completes the proof of Corollary 2.8.

References

- [1] F. Abdenur, Generic robustness of spectral decompositions, Ann, Scient, Éc. Norm. Sup. **36**, 213-224.
- [2] F. Abdenur and L. J. Díaz, Pseodo-orbit shadowing in the C¹-topology, Discrete Contin. Dyn. Syst, 17 (2007), 223-245.
- [3] C. Bonatti and S. Crovisier, Récurrence et généricité, Invent. Math., 158(2004), 33-104.
- [4] R. Corless and S. Pilyugin, Approximate and real trajectories for generic dynamical systems, J. Math. Anal. Appl. 189 (1995), 409-423.
- [5] J. Franks, Necessary conditions for stability of diffeomorphisms, Trans. Amer. Math. Soc. 158 (1971), 301-308.
- [6] S. Hayashi, Diffeomorphisms in $\mathcal{F}^1(M)$ satisfy Axiom A, Ergod. Th. & Dynam. Sys. 12 (1992), 233-253.
- [7] K. Lee, Continuous inverse shadowing and hyperbolicity, Bull. Austral. Math. Soc. 67 (2003), 15-26.
- [8] K. Lee, K. Moriyasu and K. Sakai, C¹-stable shadowing diffeomorphisms, Discrete Contin. Dvn. Syst. 22 (2008), 683-697
- [9] K. Lee amd M. Lee, Hyperbolicity C¹-stably expansive of homoclinic classes, to appear Discrete contin. Dyn. Syst.
- [10] M. Lee, C¹-stable inverse shadowing chain components for generic diffeomorphisms, preprint.
- [11] C. Robinson, Dynamical Systems: stability, symbolic dynamics, and chaos (2-nd Ed.): Studies in Advanced Mathematics, CRC Press 1999.
- [12] K. Sakai, C¹-stably shadowable chain components, Ergod. Th. & Dynam. Sys. 28 (2008), 987-1029.

*

Department of Mathematics, Mokwon University, Daejeon, 302-729, Republic of Korea E-mail: 1msds@mokwon.ac.kr