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SOME PROPERTIES OF CELLULAR AUTOMATA

Jae-Gyeom Kim*

Abstract. In this short note, we will point out and modify some
logical errors in literatures about the theory of cellular automata.

1. Introduction

Cellular automata have been demonstrated by many researchers to
be a good computational model for physical systems simulation since
the concept of cellular automata first introduced by John Von Neumann
in the 1950’s. Many parts of the theory of cellular automata have been
developed by researchers who are not mathematicians. And we could
find some logical errors in the literatures [1, 3]. In fact, the errors in [3]
have been repeated in [1].

In this short note, we will point out some of such errors and modify
parts of them. For the purpose, we will use terminologies and notations
just as in [3]. In section 2, we will give some terminologies and notations
in [3] and quote some contents from [3].

2. Preliminaries and quotation

A cellular automaton(CA) is an array of sites (cells) where each site
is in any one of the permissible states. At each discrete time step (clock
cycle) the evolution of a site value depends on some rule (the combina-
tional logic) which is a function of the present state of k of its neighbors
for a k-neighborhood CA. For 2-state 3-neighborhood CA, the evolution
of the ith cell can be represented as a function of the present states of
(i−1)th, (i)th, and (i+1)th cells as: xi(t+1) = f{xi−1(t), xi(t), xi+1(t)},
where f represents the combinational logic.
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For 2-state 3-neighborhood CA there are 23 distinct neighborhood
configurations and 223

distinct mappings from all these neighborhood
configurations to the next state, each mapping representing a CA rule.
The CA, characterized by a rule known as rule 60, specifies an evolution
from neighborhood configuration to the next state as:

111 110 101 100 011 010 001 000
0 0 1 1 1 1 0 0 Decimal 60.

The corresponding combinational logic of rule 60 is

xi(t + 1) = xi−1(t)⊕ xi(t),

that is, the next state of ith cell depends on the present states of its left
and right neighbors.

A CA characterized by EXOR and/or EXNOR dependence is called
an additive CA. If in a CA the neighborhood dependence is EXOR,
then it is called a noncomplemented CA and the corresponding rule
is referred to as a noncomplemented rule. For neighborhood depen-
dence of EXNOR (where there is an inversion of the modulo-2 logic), the
CA is called a complemented CA. The corresponding rule involving the
EXNOR function is called a complemented rule. In a complemented CA,
single or multiple cells may employ a complemented rule with EXNOR
function. There exist 16 additive rules which are: Rule 0, 15, 51, 60, 85,
90, 102, 105, 150, 153, 165, 170, 195, 204, 240 & 255.

If in a CA the same rule applies to all cells, then the CA is called
a uniform CA; otherwise the CA is called a hybrid CA. There can be
various boundary conditions; namely, null (where extreme cells are con-
nected to logic ‘0’), periodic (extreme cells are adjacent), etc.

The logic functions for three complemented rules 195, 163 and 51 and
the corresponding noncomplement rules are also noted in Table 1.

Table 1. Logic funtions

complement noncomplement
Rule logic function dependency rule logic function

195 xi−1(t)⊕ xi(t) left & self 60 xi−1(t)⊕ xi(t)
153 xi(t)⊕ xi+1(t) self & right 102 xi(t)⊕ xi+1(t)
51 xi(t) self 204 xi(t)

The characteristic matrix T of a CA is the transition matrix of the
CA. The next state ft+1(x) of an additive CA is given by ft+1(x) =
T × ft(x), where ft(x) is the current state, t is the time step. If all the
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states of the CA form a single or multiple cycles, then it is referred to
as a group CA.

Lemma 2.1. [2] A CA is a group CA iff Tm = I where T is the
chracteristic matrix of the CA, I is the identity matrix and m is a
positive integer.

Lemma 2.2. [2] Let T
m

denote the application of the complemented
rule T for m successive cycles, then

T
m[f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)]

where T is the characteristic matrix of the corresponding noncomple-
mented rule and [F (x)] is an L-dimensional vector (L = number of
cells) responsible for inversion after EXORing. F (x) has ‘1’ entries
(i.e., nonzero entries) for CA cell positions where EXNOR function is
employed.

Lemma 2.3. [2] The complement of a group CA is also a group CA.

Lemma 2.4. [4] CA rules 60, 102 and 204 form groups for all lengths
(l) with group order O(G) = n = 2a; a = 0, 1, 2, · · · ; n ≥ l > n/2.

Lemma 2.4 provides the CA rules that generate cycles of length 2a,
a = 0, 1, 2, · · · . The following Lemma establishes the corresponding
results for uniform and hybrid CA’s with complemented rules 51, 153,
and 195. The corresponding noncomplemented rules are 204, 102 and
60.

Lemma 2.5. [3] Complemented CA rules 195, 153 and 51 form groups
for all lengths with group order O(G) = m = 2a; (a = 0, 1, 2, · · · ).

Proof. [3]. Consider a CA with rule R and characteristic matrix T ,
where R is a combination of the rules 60, 102, and 204. Then, as per
Lemma 2.2, the corresponding complemented CA, with characteristic
matrix T , may be expressed as:

T
m[f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)].(1)

The fact that R is a group CA rule implies that Tn = I for n as some
integral power of 2 (Lemma 2.4). As per Lemma 2.3, complement of a
group CA is also a group CA. So,

T
m[f(x)] = [f(x)],(2)
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where m is the cycle length of the complemented CA. From (1) and (2),

[Tm + I][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)]

⇒ [T + I][I + T + T 2 + · · ·+ Tm−1][f(x)]

= [I + T + T 2 + · · ·+ Tm−1][F (x)]

Assume I + T + T 2 + · · ·+ Tm−1 6= 0, consequently

[T + I][f(x)] = [F (x)].(3)

If the CA under consideration consists of L number of cells, then (3) is
a system of L linear equations, and the condition for its solution to exist
is

rank[T + I] = rank[T + IF (x)].
In the case of R, being any combination of rules 60, 102 and 204, it can
be directly shown that rank[T + I] < L, owing to fact that one row of
matrix T + I is null in such a case. Also, since each entry of F (x) is 1
(as in the case of all complemented rules), it follows that

rank[T + I] 6= rank[T + IF (x)].

This is a contradiction and, hence, it follows that

I + T + T 2 + · · ·+ Tm−1 = 0(4)

⇒ T
m[f(x)] = Tm[f(x)] = f(x)(5)
⇒ Tm = I.

Let m = bn, where b is nonzero positive integer. For b = 2,

I + T + T 2 + · · ·+ Tm−1 (as m = 2n)

= I + T + T 2 + · · ·+ Tn−1 + Tn + Tn+1 + Tn+2 + · · ·+ T 2n−1

= [I + T + T 2 + · · ·+ Tn−1] + [I + T + T 2 + · · ·+ Tn−1] (as Tn = I)

= 0 (since modulo-2 summation is involved).

So, the relation (4) always satisfies for b = 2. For particular values of T ,
relation (4) may hold for b = 1. Hence, the value of m is either n or 2n.

Now we need to show that m is a nonzero positive integral power of
2. As per Lemma 2.4 in Section 2, n is of the form 2a, (a = 0, 1, 2, · · · ).
We consider the following two cases.

Case 1 : for n = 20 = 1

⇒ T = I

⇒ I + T = 0(6)



Some properties of cellular automata 451

Considering equations (4) and (6) we arrive at the conclusion that
m = 2 for n = 1.

Case 2 : for n = 2a, (a = 1 , 2 , 3 , · · · );
we know that m is either n or 2n.
So m is also a nonzero positive integral power of 2.

Theorem 2.6. [3] If a null boundary uniform or hybrid CA configured
with rules 51, 153 and 195 is a group CA, then its state transition
diagram consists of equal cycles of even length.

Proof. [3]. From Lemma 2.5, it can be seen that group CA, under
different configurations of rules 51, 153, and 195, generate cycles of even
length m (positive integral power of 2). Now we have to prove that
factors of m can not be a cycle lengths. Assume that the group CA has
a cycle of length mi [where mi is a factor of m]. Then it must satisfy
the following equations:

I + T + T 2 + · · ·+ Tmi−1 = 0 and T
mi [f(x)] = Tmi [f(x)] = f(x).

This implies that mi is the group order of all cycle lengths of the group
CA, suggesting that mi is equal to m, i.e., all cycles are equal in length.
Hence, the theorem.

Lemma 2.5 and Theorem 2.6 were proved first in [3]. And the proofs
of Lemma 2.5 and Theorem 2.6 in [1] are quite sinilar with the proofs
in [3].

3. Pointing out and modification

At first, we will point out logical errors in the proof of Lemma 2.5.
At the beginning of the proof, R is assumed as a combination of the

rules 60, 102 and 204. But such a hybrid CA is not a group CA generally.
For example, the CA with 〈204, 102, 60〉 is not a group CA by Theorem
2.6 of [2] because the determinant of the corresponding characteristic
matrix is 0. So the rules of Lemma 2.5 should be restricted to uniform
rules.

Equation (3) in the proof is obtained, by assuming I +T +T 2 + · · ·+
Tm−1 6= 0, from the equation

[T + I][I +T +T 2 + · · ·+Tm−1][f(x)] = [I +T +T 2 + · · ·+Tm−1][F (x)].

If I + T + T 2 + · · · + Tm−1 is invertible, the equation (3) holds. But
nonzero matrix generally is not invertible. So equation (3) can not be
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obtained directly from the assuming. And the rest of the proof is not
satisfactory.

Now we will give a new proof the Lemma 2.5.

New proof of Lemma 2.5. Consider a CA with rule R and char-
acteristic matrix T where R is a uniform rule of 60, 102 or 204. Then,
by Lemma 4, R is a group rule with group order n for n as some integral
power of 2 which means n is the least positive integer so that Tn = I.
The corresponding complemented CA with characteristic matrix T is a
group CA by Lemma 2.3. So we have

T
m = I(7)

for some positive integer m by Lemma 1 and may assume that m is
the least positive integer with such property. And we have, by Lemma
2.2,

T
m[f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)](8)

for any state f(x). From (7) and (8), we have

I[f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)] + [Tm][f(x)].

By transposition of the term [Tm][f(x)], we have

[Tm + I][f(x)] = [I + T + T 2 + · · ·+ Tm−1][F (x)].(9)

The right side of (9) is independent of the state f(x). Thus, for any
state f(x) and g(x), we have [Tm + I][f(x)] = [Tm + I][g(x)] and so
[Tm +I][f(x)−g(x)] = 0. It means [Tm +I][h(x)] = 0 for all state h(x).
Therefore we have [Tm + I] = 0 which means that Tm = I because
modulo 2 summation is involved. This says that n divides m because n
is the group order of the CA with characteristic matrix T .

Now let k = 2n. Then, from (8), we have

T
k[f(x)] = [I + T + T 2 + · · ·+ T 2n−1][f(x)] + [T 2n][f(x)]

= [I + T + T 2 + · · ·+ T 2n−1][f(x)] + [f(x)].(10)
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And we have

I + T + T 2 + · · ·+ T 2n−1

= (I + T + T 2 + · · ·+ Tn−1) + (Tn + Tn+1 + Tn+2 + · · ·+ T 2n−1)

= (I + T + T 2 + · · ·+ Tn−1) + (I + T + T 2 + · · ·+ Tn−1)Tn

= (I + T + T 2 + · · ·+ Tn−1) + (I + T + T 2 + · · ·+ Tn−1)

(because Tn = I)

= 0 (because modulo 2 summation involved).

Thus we have T
k[f(x)] = [f(x)] for all f(x) from (10). This means that

m divides k(= 2n) because m is the group order of the complemented
CA with characteristic matrix T .

Hence we have shown that m = n or m = 2n which means that m is
a power of 2.

Finally, we will point out some errors of Theorem 2.6. The proof of
Theorem 2.6 is started with the result of Lemma 2.5. But the proof
of Lemma 2.5 is not valid in case of hybrid CA at all as was pointed
out above. So the proof of Theorem 2.6 is not valid in case of hybrid
CA. Furthermore, the proof of Theorem 2.6 depend on the equation (4).
But we have pointed out above there is no logical basis for the equation.
Thus the proof of Theorem 2.6 should be reconstructed.
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