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C-DUNFORD AND C-PETTIS INTEGRALS

Chao Yu*, Dafang Zhao**, and Guoju Ye***

Abstract. In this paper, we give some extensions of Dunford inte-
gral and Pettis integral, C-Dunford integral and C-Pettis integral.
We also discuss the relation among the C-Dunford integral, C-Pettis
integral and C-integral.

1. Introduction

In 1986 A. M. Bruckner, R. J. Fleissner and J. Fordan [1] researched
the following function

F (x) =
{

x2 sin 1
x2 if 0 < x ≤ 1

0 if x = 0 .

It is a primitive for the Riemann improper integral and therefore for
the Henstock integral, but it is neither a Lebesgue primitive, neither a
differential function, nor a sum of Lebesgue primitive and a differen-
tiable function. It is natural to ask whether there is a minimal integral
including the Lebesgue integral and the derivative.

In 1996 B. Bongiorno [2] provided a new solution to the problem of
recovering a function from its derivative by integration by introducing
a constructive minimal integration process of Riemann type, called C-
integral, which includes the Lebesgue integral and also integrates the
derivatives of differentiable function. B. Bongiorno and L. Di Piazza in
[3]-[4] discussed some properties of the C-integral of real-valued func-
tions. The C-integral is a natural extension of the Lebesgue integral.
In [9]-[11], Dafang Zhao and Guoju Ye studied the Banach-valued C-
integral.

The authors of [5]-[7] studied the Denjoy extension of the McShane
integral and others of functions mapping an interval [a, b] into a Banach
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space X. In this paper, we will study the C-extension of the Dunford
and Pettis integrals to C-Dunford integral and C-Pettis integral. We
prove that a function f is C-Dunford integrable if and only if x∗f is
C-integrable for all x∗ ∈ X∗. Further we discuss the relation among the
C-Dunford integral , C-Pettis integral and C-integral.

2. Definition and basic properties

Throughout this paper, X will denote a real Banach space with norm
||.|| and X∗ its dual. [a, b] is a compact interval in R. A partition D
is a finite collection of interval-point pairs {[ui, vi], ξi}, where [ui, vi] are
non-overlapping subintervals of [a, b]. δ(ξ) is a positive function on [a, b],
i.e, δ(ξ) : [a, b] → R+ and we call it a gauge. We say D={[ui, vi], ξi}n

i=1
is

(1) a partial partition of [a, b] if
⋃n

i=1[ui, vi] ⊂ [a, b].
(2) δ-fine Mcshane partition of [a, b] if [ui, vi] ⊂ B(ξi, δ(ξi)) = (ξi −

δ(ξi), ξi + δ(ξi)) and ξi ∈ [a, b] for all i = 1, 2, ..., n.
(3) δ-fine C-partition of [a, b] if it is a δ-fine Mcshane partition of [a, b]

and satisfying the condition
n∑

i=1

dist(ξi, [ui, vi]) <
1
ε
.

Definition 2.1. A function f : [a, b] → X is C-integrable if there
exists a vector A ∈ X such that for each ε > 0, there is a gauge δ such
that

‖(D)
n∑

i=1

f(ξi)(vi − ui)−A‖ < ε

for each δ−fine C-partition D = {([ui, vi], ξi)}n
i=1 of [a, b]. A is called

the C-integral of f on [a, b], and we write A =
∫ b
a f or A = (C)

∫ b
a f .

The function f is C-integrable on the set E ⊂ [a, b] if the function fχE

is C-integrable on [a, b]. We write
∫
E f =

∫ b
a fχE .

From the Definition of C-integral, we can easily obtain the following
Theorem 2.1 and Theorem 2.2.

Theorem 2.1. A function f : [a, b] →X is C-integrable if and only if
for each ε > 0 there is a gauge δ such that

‖(D1)
∑

f(ξi)(vi − ui)− (D2)
∑

f(ηj)(tj − sj)‖ < ε
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for arbitrary δ - fine C-partition D1 = {([ui, vi], ξi)}n
i=1 and D2 =

{([sj , tj ], ηj)}p
j=1 of [a, b].

Theorem 2.2. Let f : [a, b] → X and g : [a, b] → X.

(1) If f is C−integrable on [a, b], then f is C−integrable on every
subinterval of [a, b].

(2) If f is C−integrable on each of the intervals I1 and I2, where Ii

are nonoverlapping and I1
⋃

I2 = [a, b], then f is C−integrable on [a, b]
and

∫
I1

f +
∫
I2

f =
∫ b
a f .

(3) If f and g are C−integrable on [a, b] and if α and β are real

numbers, then αf + βg is C−integrable on [a, b] and
∫ b
a (αf + βg) =

α
∫ b
a f + β

∫ b
a g.

Theorem 2.3. Let f : [a, b] → X. If f = θ almost everywhere on

[a, b], then f is C−integrable and
∫ b
a f = θ.

Proof. Assume E = {ξ ∈ [a, b] : f(ξ) 6= θ} then E =
⋃

n En ⊂ [a, b],
where En = {ξ ∈ E : n − 1 ≤ ‖f(ξ)‖ < n}. Obviously, µ(E) = 0 and
µ(En) = 0 for every n ∈ N . Then there are open sets Gn ⊂ [a, b] such
that En ⊂ Gn and µ(Gn) < ε

n·2n . We define a gauge δ in such a way
that δ(ξ) = 1 if ξ ∈ [a, b]

∖
E and B(ξ, δ(ξ)) ⊂ Gn if ξ ∈ En.

Suppose that D = {([ui, vi], ξ)i = 1, 2, ..., m} is a δ− fine C−partition
of [a, b]. Then

‖
m∑

i=1

f(ξ)(vi − ui)‖ ≤
∑

n

n
ε

n · 2n
< ε.

Hence, f is C−integrable on [a, b] and
∫ b
a f = θ.

The following Lemma has been proved in [9]. For convenience to use
it we present it here.

Lemma 2.4 (Saks-Henstock). Let f : [a, b] → X be C-integrable on
[a, b]. Then for ε > 0 there is a gauge δ such that

‖(D)
n∑

i=1

f(ξi)(vi − ui)−
∫ b

a
f‖ < ε

for each δ - fine C-partition D = {([ui, vi], ξi)}n
i=1 of [a, b]. Particularly,

if D
′

= {([ui, vi], ξi)}m
i=1 is an arbitrary δ - fine partial C-partition of
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[a, b], we have

‖(D′)
m∑

i=1

f(ξi)(vi − ui)−
m∑

i=1

∫ vi

ui

f(ξi)‖ ≤ ε.

3. C-Dunford integral and C-Pettis integral

Definition 3.1. A function f : [a, b] → X is C-Dunford integrable
on [a, b] if x∗f is C-integrable on [a, b] for each x∗ ∈ X∗ and if for every
subinterval [c, d] ⊂ [a, b] there exists an element x∗∗[c,d] ∈ X∗∗ such that∫ d
c x∗f = x∗∗[c,d](x

∗) for each x∗ ∈ X∗. We write

(CD)
∫ d

c
f = x∗∗[c,d] ∈ X∗∗.

A function f : [a, b] → X is C-Pettis integrable on [a, b] if f is C-
Dunford on [a, b] and (CD)

∫ d
c f ∈ X for every interval [c, d] ⊂ [a, b].

We write

(CP )
∫ d

c
f = (CD)

∫ d

c
f ∈ X.

The function f is C-Dunford (C-Pettis) integrable on the set E ⊂
[a, b] if the function fχE is C-Dunford (C-Pettis) integrable on [a, b]. We
write(CD)

∫
E f = (CD)

∫ b
a fχE ((CP )

∫
E f = (CP )

∫ b
a fχE).

Theorem 3.1. Let f : [a, b] → X be C-Dunford integrable on [a, b] if
and only if x∗f is C-integrable on [a, b] for each x∗ ∈ X∗.

Proof. If f is C-Dunford integrable on [a, b], then x∗f is C-integrable
on [a, b] for each x∗ ∈ X∗.

Now we prove the ”only if ” part.
If x∗f is C-integrable on [a, b] for each x∗ ∈ X∗, then x∗f is Denjoy

integrable on [a, b] and the Denjoy integral (D)
∫ b
a x∗f = (C)

∫ b
a x∗f .

From Theorem 3 in [12], f is Denjoy-Dunford integrable on [a, b] and for
every subinterval [c, d] ⊂ [a, b] there exists an element x∗∗[c,d] ∈ X∗∗ such

that (D)
∫ d
c x∗f = x∗∗[c,d](x

∗) for each x∗ ∈ X∗.
Since x∗f is C-integrable on [c, d] and

(D)
∫ d

c
x∗f = (C)

∫ d

c
x∗f = x∗∗[c,d](x

∗)

for each x∗ ∈ X∗. Hence f is C-Dunford integrable on [a, b].



C-Dunford and C-Pettis integrals 431

The following theorem can be proved easily by [14].

Theorem 3.2. If f : [a, b] → R is C-integrable on [a, b], then there ex-
ists a nondegenerate subset J ⊂ [a, b] such that f is Lebesgue integrable
on J .

Theorem 3.3. If X contains no copy of c0 and f : [a, b] → X is
C-Dunford integrable, then there exists a subinterval EN ⊂ [a, b] such
that f is Dunford integrable on EN .

Proof. Let {En} be the sequence of all open intervals in [a, b] that
have rational endpoints. For each pair of positive integers m and n let
En

m = {x∗ ∈ X∗ :
∫
En
|x∗f | ≤ m}. Then X∗ =

⋃∞
m

⋃∞
n En

m.
For each m and n we have En

m ⊂ X∗, so
⋃∞

m

⋃∞
n En

m ⊂ X∗. On the
other hand, for every x∗ ∈ X∗, by Theorem 3.1, x∗f is C-integrable on
[a, b]. It follows from Theorem 3.2 that there exists a nondegenerate
interval J ⊂ [a, b] such that x∗f is Lebesgue integrable on J . So there is
a n0 ∈ N such that En0 ∈ {En}, En0 ⊂ J and therefore x∗f is Lebesgue
integrable on En0 . Hence there is a m0 such that

∫
En0

|x∗f | ≤ m0. This
means x∗ ∈ En0

m0
. So X∗ =

⋃∞
m

⋃∞
n En

m.
Now we prove each of the sets En

m is closed.
Let x∗ be a limit point of En

m and {x∗k} a sequence in En
m that con-

verges to x∗. Then the sequence {|x∗kf |} converges pointwise on [a, b] to
the function |x∗f | and by Fatou’s Lemma we have∫

En

|x∗f | ≤ lim inf
k→∞

{
∫

En

|x∗kf |} ≤ m.

This shows x∗ ∈ En
m and concludes that the set En

m is closed.
By the Baire Category Theorem there exists M ,N , x∗0, and r > 0

such that {x∗ : ‖x∗ − x∗0‖ ≤ r} ⊂ EN
M . For each x∗ in X∗ with ‖x∗‖ 6= 0

we find that∫

EN

|x∗f | ≤ ‖x∗‖
r
{
∫

EN

| r

‖x∗‖x∗f + x∗0f |+
∫

EN

|x∗0f |} ≤
2M

r
‖x∗‖.

Hence, for each x∗ in X∗ the function x∗f is Lebesgue integrable on EN .
So f is Dunford integrable on EN .

Theorem 3.4. If the function f : [a, b] → X is C-Dunford integrable
on [a, b], then there is a sequence {En} of closed subsets such that En ⊂
En+1 for all n,

⋃∞
n=1 En = [a, b], f is Dunford integrable on each En and

lim
n→∞(Dunford)

∫

En
⋂

[a,x]
f(t)dt = (CD)

∫ x

a
f(t)dt
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weakly uniformly on [a, b].

Proof. Since f : [a, b] → X is C-Dunford integrable on [a, b], x∗f is
C-integrable on [a, b] for each x∗ ∈ X∗. Then there is a sequence {En}
of closed subsets such that En ⊂ En+1 for all n,

⋃∞
n=1 En = [a, b], x∗f

is Lebesgue integrable on each En and

lim
n→∞(L)

∫

En
⋂

[a,x]
x∗f(t)dt = (C)

∫ x

a
x∗f(t)dt

uniformly on [a, b] for each x∗ ∈ X∗. Hence f is Dunford integrable on
each En and

lim
n→∞(Dunford)

∫

En
⋂

[a,x]
f(t)dt = (CD)

∫ x

a
f(t)dt

weakly uniformly on [a, b].

According to [8], we can easily obtain the following two theorems:

Theorem 3.5. If the function f : [a, b] → X is C-Dunford integrable
on [a, b], then each perfect set in [a, b] contains a portion on which f is
Dunford integrable.

Theorem 3.6. Suppose that X contains no copy of c0. If the function
f : [a, b] → X is C-Pettis integrable on [a, b], then each perfect set in
[a, b] contains a portion on which f is Pettis integrable.

Let F : [a, b] → X be a function and let E be a subset of [a, b].

Definition 3.2. (a) A function F is ACc on E if for each ε > 0 there
is a constant η > 0 and a gauge δ such that

∑
i ‖F [ui, vi]‖ < ε for each

δ-fine partial C-partition D = {([ui, vi], ξi)}n
i=1 of [a, b] satisfying the

endpoints of Ii belonging to E and
∑n

i=1(vi−ui) < η, where F [ui, vi] =
F (vi)− F (ui).

(b) The function F is ACGc on E if F is continuous on E and E can
be expressed as a union of sets on each of which F is ACc.

From Definition 3.2 above, we can see if a function F is ACc on E
then F is AC on E and if a function F is ACGc on E, then F is ACG
on E.

Theorem 3.7. If a function f : [a, b] → X is C-Dunford integrable on
[a, b], then there exists a sequence {Xk} of closed sets,

⋃∞
k=1 Xk = [a, b],

f is Dunford integrable on each Xk.



C-Dunford and C-Pettis integrals 433

Proof. Since f is C-Dunford on [a, b], for each x∗ ∈ X∗, x∗f is C-
integrable on [a, b]. Let F be the primitive of f . Then for every interval
[ui, vi] ⊂ [a, b], i = 1, 2, ...n,

∫ vi

ui
x∗f = x∗

∫ vi

ui
f = x∗F [ui, vi] and x∗F

is ACGc on [a, b] for each x∗ ∈ X∗. So there is a sequence {Xk} of
closed subsets such that

⋃∞
k=1 Xk = [a, b] and x∗F is V B∗ on each

Xk for each x∗ ∈ X∗. From [15], x∗f is Lebesgue integrable on each
Xk for each x∗ ∈ X∗. So f is Dunford integrable on each Xk and⋃∞

k=1 Xk = [a, b].

Theorem 3.8. Suppose that X contains no copy of c0 and f : [a, b] →
X is measurable. If the function f : [a, b] → X is C-Pettis integrable on
[a, b], then there exists a sequence {Xk} of closed sets with Xk ↑ [a, b]
such that f is Pettis integrable on each Xk, and

lim
k→∞

(Pettis)
∫

Xk

f = (CP )
∫ b

a
f weakly.

Proof. Since f is C-Pettis integrable on [a, b], then f is C-Dunford
integrable on [a, b], and so by Theorem 3.4, there is a sequence {Xk}
of closed subsets such that Xk ⊂ Xk+1 for all k,

⋃∞
k=1 Xk = [a, b], f is

Dunford integrable on each Xk and

lim
n→∞(L)

∫

Xk
⋂

[a,x]
x∗f(t)dt = (CD)

∫ x

a
x∗f(t)dt

uniformly on [a, b] for each x∗ ∈ X∗. Since X contains no copy of c0

and f is measurable, it follows from [13] that f is Pettis integrable on
Xk and

lim
k→∞

(Pettis)
∫

Xk
⋂

[a,x]
f(t)dt = (CP )

∫ x

a
f(t)dt

uniformly on each [a, x], that is

lim
k→∞

(Pettis)
∫

Xk

f = (CP )
∫ b

a
f weakly.
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