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C-DUNFORD AND C-PETTIS INTEGRALS

CHAO YU*, DAFANG ZHAO**, AND GUOJU YE***

ABSTRACT. In this paper, we give some extensions of Dunford inte-
gral and Pettis integral, C-Dunford integral and C-Pettis integral.
We also discuss the relation among the C-Dunford integral, C-Pettis
integral and C-integral.

1. Introduction

In 1986 A. M. Bruckner, R. J. Fleissner and J. Fordan [1] researched
the following function

2. 1 . <
F(m):{ z7sin —5 if 0<z<l1

0 if =0

It is a primitive for the Riemann improper integral and therefore for
the Henstock integral, but it is neither a Lebesgue primitive, neither a
differential function, nor a sum of Lebesgue primitive and a differen-
tiable function. It is natural to ask whether there is a minimal integral
including the Lebesgue integral and the derivative.

In 1996 B. Bongiorno [2] provided a new solution to the problem of
recovering a function from its derivative by integration by introducing
a constructive minimal integration process of Riemann type, called C-
integral, which includes the Lebesgue integral and also integrates the
derivatives of differentiable function. B. Bongiorno and L. Di Piazza in
[3]-[4] discussed some properties of the C-integral of real-valued func-
tions. The C-integral is a natural extension of the Lebesgue integral.
In [9]-[11], Dafang Zhao and Guoju Ye studied the Banach-valued C-
integral.

The authors of [5]-[7] studied the Denjoy extension of the McShane
integral and others of functions mapping an interval [a, b] into a Banach
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space X. In this paper, we will study the C-extension of the Dunford
and Pettis integrals to C-Dunford integral and C-Pettis integral. We
prove that a function f is C-Dunford integrable if and only if z*f is
C-integrable for all z* € X*. Further we discuss the relation among the
C-Dunford integral , C-Pettis integral and C-integral.

2. Definition and basic properties

Throughout this paper, X will denote a real Banach space with norm
||l.|| and X* its dual. [a,b] is a compact interval in R. A partition D
is a finite collection of interval-point pairs {[u;, v;],&;}, where [u;, v;] are
non-overlapping subintervals of [a, b]. 0(£) is a positive function on [a, b],
ie, 6(&) : [a,b] — RT and we call it a gauge. We say D={[u;, v;], &},
is

(1) a partial partition of [a,b] if | [ui, vi] C [a,b].

(2) d-fine Mcshane partition of [a,b] if [u;,v;] C B(&;,0(&)) = (& —
(5(&),& + (5(&)) and & € [a, b] foralli=1,2,...,n.

(3) d-fine C-partition of [a, b] if it is a d-fine Mcshane partition of [a, b]
and satisfying the condition

n . 1
;dzst(éi, [ug, v;]) < B

DEFINITION 2.1. A function f : [a,b] — X is C-integrable if there
exists a vector A € X such that for each € > 0, there is a gauge ¢ such
that

(D) D~ f(E)(vi —ui) = Al <e
=1

for each d—fine C-partition D = {([u;,vi],&)}, of [a,b]. A is called
the C-integral of f on [a,b], and we write A = f;f or A= (C) ff f.
The function f is C-integrable on the set E C [a,b] if the function fxg
is C-integrable on [a,b]. We write [, f = f; XE.

From the Definition of C-integral, we can easily obtain the following
Theorem 2.1 and Theorem 2.2.

THEOREM 2.1. A function f : [a,b] —X is C-integrable if and only if
for each € > 0 there is a gauge § such that

1(D1) Y~ f(&) (v = wi) = (D2) Y f(ny)(t —s5)l| < e
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for arbitrary 6 - fine C-partition D1 = {([u;,v;],&)}, and Dy =
{([sj.t5)mp) Y=y of [a,b].

THEOREM 2.2. Let f: [a,b] — X and g : [a,b] — X.

(1) If f is C—integrable on [a,b], then f is C—integrable on every
subinterval of [a, b].

(2) If f is C'—integrable on each of the intervals I; and Is, where I;
are nonoverlapping and I | J I> = [a, b], then f is C—integrable on [a, b]
andfhf"‘ffgf:fff'

(3) If f and g are C'—integrable on |a,b] and if o and (3 are real
numbers, then af + [g is C'—integrable on [a,b] and f;(oéf + Bg) =

aflf+B8])g

THEOREM 2.3. Let f : [a,b] — X. If f = 6 almost everywhere on
[a,b], then f is C'—integrable and f;f =4.

Proof. Assume E = {{ € [a,b] : f(§) # 6} then E = {J,, B, C [a,b],
where E, = {{ € E:n—1<|f(&)] < n}. Obviously, u(F) = 0 and
w(Ey) = 0 for every n € N. Then there are open sets G,, C [a,b] such
that E, C G, and pu(Gn) < —57. We define a gauge ¢ in such a way
that §(&) = 1if £ € [a,b]\F and B(£,6(£)) C Gy if € € E,.

Suppose that D = {([u, v;],€)i = 1,2, ...,m} is a 6— fine C'—partition
of [a,b]. Then

- €
I F© )l < Yo <
=1 n
Hence, f is C—integrable on [a, b] and ff f=40.
]

The following Lemma has been proved in [9]. For convenience to use
it we present it here.

LEMMA 2.4 (Saks-Henstock). Let f : [a,b] — X be C-integrable on
[a,b]. Then for ¢ > 0 there is a gauge § such that

n

b
D) Y f(E s —ui) — [ £ <

1=1

for each 6 - fine C-partition D = {([u;,v;], &)}, of [a,b]. Particularly,
if D" = {([ui,v;], &)}, is an arbitrary & - fine partial C-partition of
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[a, b], we have

D) 16 Z ROEE

3. C-Dunford integral and C-Pettis integral

DEFINITION 3.1. A function f : [a,b] — X is C-Dunford integrable
on [a,b] if 2* f is C-integrable on [a, b] for each z* € X* and if for every
subinterval [¢,d] C [a,b] there exists an element zisg € X such that

fcd o f = a7y (%) for each 2™ € X*. We write

A function f : [a,b] — X is C-Pettis integrable on [a,b] if f is C-
Dunford on [a,b] and (CD) fcd f € X for every interval [c,d] C la,b].

We write
CP/f CD/feX

The function f is C-Dunford (C-Pettis) integrable on the set E C
[a, b] if the function fx g is C-Dunford (C-Pettis) integrable on [a, b]. We

write(CD) [,, f = (CD) [? fxg ((CP) [, f = (CP) [’ fx&).

THEOREM 3.1. Let f : [a,b] — X be C-Dunford integrable on |[a, b] if
and only if z* f is C-integrable on [a, b] for each z* € X*.

Proof. If f is C-Dunford integrable on [a, b], then z* f is C-integrable
on [a,b] for each z* € X*.

Now we prove the "only if 7 part.

If z* f is C-integrable on [a,b] for each z* € X*, then x* f is Denjoy
integrable on [a,b] and the Denjoy integral (D) f; z*f = (O) fab x*f.
From Theorem 3 in [12], f is Denjoy-Dunford integrable on [a, b] and for
every subinterval [c, d] C [a,b] there exists an element zfry € X™ such
that (D )f x*f —:U[Cd]( x*) for each z* € X*.

Since z* f is C-integrable on [c, d] and

(D)/Cd:c*f=<c>/cdx f=ay(a®)

for each z* € X*. Hence f is C-Dunford integrable on [a, b].
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The following theorem can be proved easily by [14].

THEOREM 3.2. If f : [a,b] — R is C-integrable on [a, b], then there ex-
ists a nondegenerate subset J C [a,b] such that f is Lebesgue integrable
on J.

THEOREM 3.3. If X contains no copy of ¢y and f : [a,b] — X is
C-Dunford integrable, then there exists a subinterval En C [a,b] such
that f is Dunford integrable on Ey.

Proof. Let {E,,} be the sequence of all open intervals in [a,b] that
have rational endpoints. For each pair of positive integers m and n let
Ep, ={z* € X*: [ [2*f] <m}. Then X* =73 U,y EV,.

For each m and n we have E?, C X*, so ;> ;" EJ, € X*. On the
other hand, for every z* € X*, by Theorem 3.1, * f is C-integrable on
[a,b]. Tt follows from Theorem 3.2 that there exists a nondegenerate
interval J C [a, b] such that z* f is Lebesgue integrable on J. So there is
ang € N such that E,, € {E,}, E,, C J and therefore z* f is Lebesgue
integrable on E,,. Hence there is a mg such that | Eny |x* f| < mg. This
means z* € EJ0. So X* = U Ep,.

Now we prove each of the sets E, is closed.

Let z* be a limit point of E}, and {z}} a sequence in E;, that con-
verges to *. Then the sequence {|z} f|} converges pointwise on [a,b] to
the function |z* f| and by Fatou’s Lemma we have

/ lz* f| < liminf{/ lz3 f1} < m.
En k—oo " JE,

This shows x* € E and concludes that the set E is closed.

By the Baire Category Theorem there exists M ,N, x{, and r > 0
such that {z* : ||z* — z§|| < r} C EY. For each x* in X* with ||*|| # 0
we find that

[ o< e+ [y < 2.

Ex r ey 2] Ex r
Hence, for each x* in X* the function z* f is Lebesgue integrable on Ey.
So f is Dunford integrable on Ey.

O
THEOREM 3.4. If the function f : [a,b] — X is C-Dunford integrable

on [a,b], then there is a sequence {E,} of closed subsets such that E, C
Enq1 for alln, | )22, E, = [a,b], f is Dunford integrable on each E,, and

n=1
Tim (Dun ford) / F(#)dt = (CD) / "

E»Nla,zx]
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weakly uniformly on [a, b].

Proof. Since f : [a,b] — X is C-Dunford integrable on [a,b], x* f is
C-integrable on [a, b] for each z* € X*. Then there is a sequence {E,,}
of closed subsets such that E, C E,4; for all n, ;2| E, = [a,b], 2*f
is Lebesgue integrable on each FE,, and

Jim (L)/ N ]x*f(t)dt:(C)/xx*f(t)dt

—
n—oo a

uniformly on [a, b] for each z* € X*. Hence f is Dunford integrable on
each F, and

nllngo(Dunford)/JE . ]f(t)dt = (CD) /w f(t)dt

weakly uniformly on [a, b].
0

According to [8], we can easily obtain the following two theorems:

THEOREM 3.5. If the function f : [a,b] — X is C-Dunford integrable
on [a,b], then each perfect set in [a,b] contains a portion on which f is
Dunford integrable.

THEOREM 3.6. Suppose that X contains no copy of ¢y. If the function
f : [a,b] — X is C-Pettis integrable on [a,b], then each perfect set in
[a, b] contains a portion on which f is Pettis integrable.

Let F : [a,b] — X be a function and let E be a subset of [a, b].

DEFINITION 3.2. (a) A function F is AC, on E if for each € > 0 there
is a constant 7 > 0 and a gauge d such that >, || F[u;, vs]|| < € for each
d-fine partial C-partition D = {([us, vi], &)}, of [a,b] satisfying the
endpoints of I; belonging to E and > ; (v; —u;) < n, where Flu;, v;] =

(b) The function F is ACG. on E if F' is continuous on E and E can
be expressed as a union of sets on each of which F' is AC..

From Definition 3.2 above, we can see if a function F is AC,. on F
then F' is AC on E and if a function F' is ACG. on E, then F' is ACG
on F.

THEOREM 3.7. If a function f : [a,b] — X is C-Dunford integrable on
[a,b], then there exists a sequence { Xy} of closed sets, | Jrey X = [a, ],
f is Dunford integrable on each Xj.
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Proof. Since f is C-Dunford on [a,b], for each z* € X* z*f is C-
integrable on [a, b]. Let F' be the primitive of f. Then for every interval
[ui,v;] C [a,bl,i = 1,2,...n, qu: ¥ f = a* f;:f = 2*Flu;,v;] and x*F
is ACG. on [a,b] for each z* € X*. So there is a sequence {Xj} of
closed subsets such that (J,~; Xz = [a,b] and z*F is VB* on each
X for each z* € X*. From [15], z*f is Lebesgue integrable on each
X for each z* € X*. So f is Dunford integrable on each X and
U X = [a,b]. 0

THEOREM 3.8. Suppose that X contains no copy of ¢y and f : [a,b] —
X is measurable. If the function f : [a,b] — X is C-Pettis integrable on
[a,b], then there exists a sequence {X}} of closed sets with Xy, 1 [a, b]
such that f is Pettis integrable on each X, and

b
lim (Pettis) f= (CP)/ [ weakly.
k—o0 X a

Proof. Since f is C-Pettis integrable on [a, b], then f is C-Dunford
integrable on [a,b], and so by Theorem 3.4, there is a sequence {X}
of closed subsets such that X C Xjyq for all k, Ui~ Xi = [a,b], [ is
Dunford integrable on each X, and

JE&(L)/X o ]x*f(t)dt:(CD)/zx*f(t)dt

uniformly on [a,b] for each z* € X*. Since X contains no copy of ¢
and f is measurable, it follows from [13] that f is Pettis integrable on
Xk and

im ) = (C '
lim (Pettis) /X o Sa=(cP) / Ft)dt

uniformly on each [a, 2], that is

b
lim (Pettis) f= (CP)/ [ weakly.
k—oo X}, a
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