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FUNCTIONAL INEQUALITIES CONNECTED WITH A
DERIVATION AND A GENERALIZED DERIVATION

Ick-Soon Chang*

Abstract. In this article, we investigate the functional inequalities
concerned with a derivation and a generalized derivation.

1. Introduction

The stability problem of functional equations has originally been for-
mulated by S. M. Ulam [6] in 1940: Under what condition does there
exists a homomorphism near an approximate homomorphism? In fol-
lowing year, D. H. Hyers [2] answers the problem of Ulam under the
assumption that the groups are Banach spaces. A generalized version of
the theorem of Hyers for approximately linear mappings was given by
Th. M. Rassias [4]. Since then, a great deal of work has been done by
a number of authors.

Let A be an algebra. An additive mapping µ : A → A is called a ring
derivation if µ(xy) = xµ(y) + µ(x)y holds for all x, y ∈ A. An additive
mapping µ : A → A is said to be a ring generalized derivation if there
exists a ring derivation δ : A → A satisfying µ(xy) = xµ(y) + δ(x)y is
fulfilled for all x, y ∈ A.

In particular, the stability result concerning derivations between op-
erator algebras was first obtained by P. Šemrl [5]. Moreover, the Hyers-
Ulam stability of ring derivations was studied and investigated by R.
Badora and T. Miura et al. [1, 3].

The main purpose of this article is to establish the functional in-
equalities associated with the ring derivation and the ring generalized
derivation.

Received October 04, 2007.
2000 Mathematics Subject Classification: 39B72, 39B52.
Key words and phrases: stability, superstability, ring derivation, ring generalized

derivation.



16 Ick-Soon Chang

2. Stability of a derivation and a generalized derivation

Theorem 2.1. Let A be a Banach algebra. Suppose that a function
f : A → A satisfies the inequality

(2.1) ‖f(x + y − zw)− f(x− y) + 2f(−y) + zf(w) + f(z)w‖ ≤ θ

for all x, y, z, w ∈ A and f(0) = 0. Then there exists a ring derivation d :
A → A such that ‖f(x)−d(x)‖ ≤ 2θ for all x ∈ A and x(f(y)−d(y)) = 0
for all x, y ∈ A.

Proof. Let us take w = 0 in (2.1), then it becomes

(2.2) ‖f(x + y)− f(x− y) + 2f(−y)‖ ≤ θ.

If x = 0 and y = −x in (2.2), it follows that

(2.3) ‖f(−x) + f(x)‖ ≤ θ.

Substituting x and y with −x in (2.2), then we have

(2.4) ‖f(−2x) + 2f(x)‖ ≤ θ.

Combining (2.3) and (2.4), one can easily get that ‖2f(x)−f(2x)‖ ≤ 2θ,

and so we obtain the inequality ‖f(2x)
2 −f(x)‖ ≤ θ. An induction implies

that

(2.5)
∥∥∥f(2nx)

2n
− f(x)

∥∥∥ ≤ 2
(
1− 1

2n

)
θ.

For n > m, the relation (2.5) can be rewritten∥∥∥f(2nx)
2n

− f(2mx)
2m

∥∥∥ =
1

2m

∥∥∥f(2n−m · 2mx)
2n−m

− f(2mx)
∥∥∥

≤ 1
2m−1

(
1− 1

2n−m

)
θ.

As m →∞, it can be easily verified that {f(2nx)
2n } is a Cauchy sequence.

Since A is complete, the Cauchy sequence {f(2nx)
2n } converges. Thus if

d(x) = limn→∞
f(2nx)

2n for all x ∈ A, then we have ||f(x) − d(x)|| ≤ 2θ
as n → ∞ in (2.5). Replacing x and y with 2nx and 2ny in (2.2),
respectively, and then dividing both sides by 2n. We get∥∥∥f(2n(x + y))

2n
− f(2n(x− y))

2n
+

2f(−2ny)
2n

∥∥∥ ≤ θ

2n
.

As n →∞ in the above inequality, we also get

(2.6) d(x + y)− d(x− y) + 2d(−y) = 0.
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The equation (2.6) can be more simplified as d(y)+d(−y) = 0 if we take
x = 0. This implies that d is an odd function and d(0) = 0. Similarly,
substituting y = x into (2.6), we obtain that d(2x) = 2d(x). Let u = x+y
and v = x − y in the equation (2.6), then we can rewrite the equation
(2.6) as d(u) − d(v) + 2d(−u−v

2 ) = 0 and by putting v := −v in this
equation, we have

(2.7) 2d
(u + v

2

)
= d(u) + d(v).

Hence if we set u = 2x and v = 2y in (2.7) and use the equation
d(2x) = 2d(x), we finally obtain d(x + y) = d(x) + d(y), and so we can
conclude that d is additive.

We claim that d is unique: Suppose that there exists another additive
function D : X → Y satisfying the inequality ‖D(x)−d(x)‖ ≤ 2θ. Since
D(2nx) = 2nD(x) and d(2nx) = 2nd(x), we see that

‖D(x)− d(x)‖ =
1
2n
‖D(2nx)− d(2nx)‖

≤ 1
2n

[‖D(2nx)− f(2nx)‖+ ‖f(2nx)− d(2nx)‖] ≤ 1
2n−2

θ.

By letting n →∞ in this inequality, we have D = d.

We finally assert that d is the derivation: Let us take x = y = 0 in
(2.1). Then it follows that

(2.8) ‖f(−zw) + zf(w) + f(z)w‖ ≤ θ.

Define C(z, w) = f(−zw)+zf(w)+f(z)w. Since C is bounded, we have
limn→∞

C(2nz,w)
2n = 0. Observed that

d(−zw) = lim
n→∞

f(−2nz · w)
2n

= lim
n→∞

−2nzf(w)− f(2nz)w + C(2nz, w)
2n

= −zf(w)− d(z)w.

Based on the fact that d is a odd function, d(zw) = zf(w)+d(z)w. Now
this equation can be rewritten as

d(2nz · w) = 2nzf(w) + 2nd(z)w, d(z · 2nw) = zf(2nw) + 2nd(z)w.

Hence zf(w) = z f(2nw)
2n , and then we obtain zf(w) = zd(w) as n →∞.

So the assertion follows, which ends the proof of the theorem.

From Theorem 2.1, we obtain the following corollary.
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Corollary 2.2. Let A be a Banach algebra with the unit. Suppose
that a function f : A → A satisfies the inequality (2.1) and f(0) = 0.
Then f is a ring derivation

Theorem 2.3. Let A be a Banach algebra with the unit. Suppose
f : A → A is a function with f(0) = 0 for which there exists a function
g : A → A such that

(2.9) ‖f(x + y − zw)− f(x− y) + 2f(−y) + zf(w) + g(z)w‖ ≤ θ.

for all x, y, z, w ∈ A. Then f is a generalized derivation and g is a
derivation.

Proof. Substituting w = 0 in (2.9), we get the inequality (2.2). Using
the facts provided in the proof of Theorem 2.1, there is a unique additive
mapping d satisfying ‖f(x)− d(x)‖ ≤ 2θ, where d(x) = limn→∞

f(2nx)
2n .

If we take x = y = 0 in (2.9), we also have

(2.10) ‖f(−zw) + zf(w) + g(z)w‖ ≤ θ.

Moreover, if we replace z and w with 2nz and 2nw, respectively in (2.10)
and then divide both sides by 22n, we get∥∥∥f(−22nzw)

22n
+ z

f(2nw)
2n

+
g(2nz)

2n
w

∥∥∥ ≤ θ

22n
→ 0,

as n →∞. Hence it implies that

lim
n→∞

g(2nz)
2n

w = −d(−zw)− zd(w) = d(zw)− zd(w),

because d is the odd function. Suppose that w = e(unit) in the above
equation, then it follows that limn→∞

g(2nz)
2n = d(z) − zd(e). Thus if

δ(z) = d(z)− zd(e), we have

δ(x + y) = d(x) + d(y)− xd(e)− yd(e) = δ(x) + δ(y).

Hence we show that δ is additive.
Let C(z, w) = f(−zw) + zf(w) + g(z)w. Since f and g satisfies the

inequality given in (2.10), limn→∞
C(2nz,w)

2n = 0. We note that

d(−zw) = lim
n→∞

f(−2nz · w)
2n

= lim
n→∞

−2nzf(w)− g(2nz)w + C(2nz, w)
2n

= −zf(w)− δ(z)w.

Hence by the oddness of d, we obtain that

(2.11) d(zw) = zf(w) + δ(z)w.
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Since δ is additive, we can rewrite the equation (2.11) as

d(2nz · w) = 2nzf(w) + 2nδ(z)w, d(z · 2nw) = zf(2nw) + 2nδ(z)w.

From the above relations, one can have zf(w) = z f(2nw)
2n . In addition,

we can obtain zf(w) = zd(w) as n → ∞. If z = e, we also have that
f = d. Therefore we have f(zw) = zf(w) + δ(z)w.

We now want to show that δ is derivation using the equations devel-
oped in the previous. Indeed,

δ(xy) = xf(y) + δ(x)y − xyf(e) = xδ(y) + δ(x)y,

which means that f is the generalized derivation.
Our task is to prove that g is the derivation: Let us replace w by 2nw

in (2.10) and multiply by 1
2n . Then we have∥∥∥f(−2nzw)

2n
+ z

f(2nw)
2n

+ g(z)w
∥∥∥ ≤ θ

2n
.

As n → ∞, we get d(zw) = zd(w) + g(z)w, and thus if w = e, we see
that g(z) = d(z) − zd(e) = δ(z). Thus g is the derivation as well. The
proof of the theorem is complete.
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