# FUNCTIONAL INEQUALITIES CONNECTED WITH A DERIVATION AND A GENERALIZED DERIVATION 

Ick-Soon Chang*


#### Abstract

In this article, we investigate the functional inequalities concerned with a derivation and a generalized derivation.


## 1. Introduction

The stability problem of functional equations has originally been formulated by S. M. Ulam [6] in 1940: Under what condition does there exists a homomorphism near an approximate homomorphism? In following year, D. H. Hyers [2] answers the problem of Ulam under the assumption that the groups are Banach spaces. A generalized version of the theorem of Hyers for approximately linear mappings was given by Th. M. Rassias [4]. Since then, a great deal of work has been done by a number of authors.

Let $A$ be an algebra. An additive mapping $\mu: A \rightarrow A$ is called a ring derivation if $\mu(x y)=x \mu(y)+\mu(x) y$ holds for all $x, y \in A$. An additive mapping $\mu: A \rightarrow A$ is said to be a ring generalized derivation if there exists a ring derivation $\delta: A \rightarrow A$ satisfying $\mu(x y)=x \mu(y)+\delta(x) y$ is fulfilled for all $x, y \in A$.

In particular, the stability result concerning derivations between operator algebras was first obtained by P. Šemrl [5]. Moreover, the HyersUlam stability of ring derivations was studied and investigated by R. Badora and T. Miura et al. [1, 3].

The main purpose of this article is to establish the functional inequalities associated with the ring derivation and the ring generalized derivation.

Received October 04, 2007.
2000 Mathematics Subject Classification: 39B72, 39B52.
Key words and phrases: stability, superstability, ring derivation, ring generalized derivation.

## 2. Stability of a derivation and a generalized derivation

Theorem 2.1. Let $A$ be a Banach algebra. Suppose that a function $f: A \rightarrow A$ satisfies the inequality

$$
\begin{equation*}
\|f(x+y-z w)-f(x-y)+2 f(-y)+z f(w)+f(z) w\| \leq \theta \tag{2.1}
\end{equation*}
$$

for all $x, y, z, w \in A$ and $f(0)=0$. Then there exists a ring derivation $d$ : $A \rightarrow A$ such that $\|f(x)-d(x)\| \leq 2 \theta$ for all $x \in A$ and $x(f(y)-d(y))=0$ for all $x, y \in A$.

Proof. Let us take $w=0$ in (2.1), then it becomes

$$
\begin{equation*}
\|f(x+y)-f(x-y)+2 f(-y)\| \leq \theta \tag{2.2}
\end{equation*}
$$

If $x=0$ and $y=-x$ in (2.2), it follows that

$$
\begin{equation*}
\|f(-x)+f(x)\| \leq \theta \tag{2.3}
\end{equation*}
$$

Substituting $x$ and $y$ with $-x$ in (2.2), then we have

$$
\begin{equation*}
\|f(-2 x)+2 f(x)\| \leq \theta \tag{2.4}
\end{equation*}
$$

Combining (2.3) and (2.4), one can easily get that $\|2 f(x)-f(2 x)\| \leq 2 \theta$, and so we obtain the inequality $\left\|\frac{f(2 x)}{2}-f(x)\right\| \leq \theta$. An induction implies that

$$
\begin{equation*}
\left\|\frac{f\left(2^{n} x\right)}{2^{n}}-f(x)\right\| \leq 2\left(1-\frac{1}{2^{n}}\right) \theta \tag{2.5}
\end{equation*}
$$

For $n>m$, the relation (2.5) can be rewritten

$$
\begin{aligned}
& \left\|\frac{f\left(2^{n} x\right)}{2^{n}}-\frac{f\left(2^{m} x\right)}{2^{m}}\right\|=\frac{1}{2^{m}}\left\|\frac{f\left(2^{n-m} \cdot 2^{m} x\right)}{2^{n-m}}-f\left(2^{m} x\right)\right\| \\
& \quad \leq \frac{1}{2^{m-1}}\left(1-\frac{1}{2^{n-m}}\right) \theta
\end{aligned}
$$

As $m \rightarrow \infty$, it can be easily verified that $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ is a Cauchy sequence. Since $A$ is complete, the Cauchy sequence $\left\{\frac{f\left(2^{n} x\right)}{2^{n}}\right\}$ converges. Thus if $d(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$ for all $x \in A$, then we have $\|f(x)-d(x)\| \leq 2 \theta$ as $n \rightarrow \infty$ in (2.5). Replacing $x$ and $y$ with $2^{n} x$ and $2^{n} y$ in (2.2), respectively, and then dividing both sides by $2^{n}$. We get

$$
\left\|\frac{f\left(2^{n}(x+y)\right)}{2^{n}}-\frac{f\left(2^{n}(x-y)\right)}{2^{n}}+\frac{2 f\left(-2^{n} y\right)}{2^{n}}\right\| \leq \frac{\theta}{2^{n}}
$$

As $n \rightarrow \infty$ in the above inequality, we also get

$$
\begin{equation*}
d(x+y)-d(x-y)+2 d(-y)=0 \tag{2.6}
\end{equation*}
$$

The equation (2.6) can be more simplified as $d(y)+d(-y)=0$ if we take $x=0$. This implies that $d$ is an odd function and $d(0)=0$. Similarly, substituting $y=x$ into (2.6), we obtain that $d(2 x)=2 d(x)$. Let $u=x+y$ and $v=x-y$ in the equation (2.6), then we can rewrite the equation (2.6) as $d(u)-d(v)+2 d\left(-\frac{u-v}{2}\right)=0$ and by putting $v:=-v$ in this equation, we have

$$
\begin{equation*}
2 d\left(\frac{u+v}{2}\right)=d(u)+d(v) \tag{2.7}
\end{equation*}
$$

Hence if we set $u=2 x$ and $v=2 y$ in (2.7) and use the equation $d(2 x)=2 d(x)$, we finally obtain $d(x+y)=d(x)+d(y)$, and so we can conclude that $d$ is additive.

We claim that $d$ is unique: Suppose that there exists another additive function $D: X \rightarrow Y$ satisfying the inequality $\|D(x)-d(x)\| \leq 2 \theta$. Since $D\left(2^{n} x\right)=2^{n} D(x)$ and $d\left(2^{n} x\right)=2^{n} d(x)$, we see that

$$
\begin{aligned}
& \|D(x)-d(x)\|=\frac{1}{2^{n}}\left\|D\left(2^{n} x\right)-d\left(2^{n} x\right)\right\| \\
& \quad \leq \frac{1}{2^{n}}\left[\left\|D\left(2^{n} x\right)-f\left(2^{n} x\right)\right\|+\left\|f\left(2^{n} x\right)-d\left(2^{n} x\right)\right\|\right] \leq \frac{1}{2^{n-2}} \theta
\end{aligned}
$$

By letting $n \rightarrow \infty$ in this inequality, we have $D=d$.
We finally assert that $d$ is the derivation: Let us take $x=y=0$ in (2.1). Then it follows that

$$
\begin{equation*}
\|f(-z w)+z f(w)+f(z) w\| \leq \theta \tag{2.8}
\end{equation*}
$$

Define $C(z, w)=f(-z w)+z f(w)+f(z) w$. Since $C$ is bounded, we have $\lim _{n \rightarrow \infty} \frac{C\left(2^{n} z, w\right)}{2^{n}}=0$. Observed that

$$
\begin{aligned}
& d(-z w)=\lim _{n \rightarrow \infty} \frac{f\left(-2^{n} z \cdot w\right)}{2^{n}} \\
& \quad=\lim _{n \rightarrow \infty} \frac{-2^{n} z f(w)-f\left(2^{n} z\right) w+C\left(2^{n} z, w\right)}{2^{n}}=-z f(w)-d(z) w
\end{aligned}
$$

Based on the fact that $d$ is a odd function, $d(z w)=z f(w)+d(z) w$. Now this equation can be rewritten as
$d\left(2^{n} z \cdot w\right)=2^{n} z f(w)+2^{n} d(z) w, d\left(z \cdot 2^{n} w\right)=z f\left(2^{n} w\right)+2^{n} d(z) w$.
Hence $z f(w)=z \frac{f\left(2^{n} w\right)}{2^{n}}$, and then we obtain $z f(w)=z d(w)$ as $n \rightarrow \infty$.
So the assertion follows, which ends the proof of the theorem.

From Theorem 2.1, we obtain the following corollary.

Corollary 2.2. Let $A$ be a Banach algebra with the unit. Suppose that a function $f: A \rightarrow A$ satisfies the inequality (2.1) and $f(0)=0$. Then $f$ is a ring derivation

Theorem 2.3. Let $A$ be a Banach algebra with the unit. Suppose $f: A \rightarrow A$ is a function with $f(0)=0$ for which there exists a function $g: A \rightarrow A$ such that
(2.9) $\|f(x+y-z w)-f(x-y)+2 f(-y)+z f(w)+g(z) w\| \leq \theta$.
for all $x, y, z, w \in A$. Then $f$ is a generalized derivation and $g$ is a derivation.

Proof. Substituting $w=0$ in (2.9), we get the inequality (2.2). Using the facts provided in the proof of Theorem 2.1, there is a unique additive mapping $d$ satisfying $\|f(x)-d(x)\| \leq 2 \theta$, where $d(x)=\lim _{n \rightarrow \infty} \frac{f\left(2^{n} x\right)}{2^{n}}$.

If we take $x=y=0$ in (2.9), we also have

$$
\begin{equation*}
\|f(-z w)+z f(w)+g(z) w\| \leq \theta \tag{2.10}
\end{equation*}
$$

Moreover, if we replace $z$ and $w$ with $2^{n} z$ and $2^{n} w$, respectively in (2.10) and then divide both sides by $2^{2 n}$, we get

$$
\left\|\frac{f\left(-2^{2 n} z w\right)}{2^{2 n}}+z \frac{f\left(2^{n} w\right)}{2^{n}}+\frac{g\left(2^{n} z\right)}{2^{n}} w\right\| \leq \frac{\theta}{2^{2 n}} \rightarrow 0
$$

as $n \rightarrow \infty$. Hence it implies that

$$
\lim _{n \rightarrow \infty} \frac{g\left(2^{n} z\right)}{2^{n}} w=-d(-z w)-z d(w)=d(z w)-z d(w)
$$

because $d$ is the odd function. Suppose that $w=e$ (unit) in the above equation, then it follows that $\lim _{n \rightarrow \infty} \frac{g\left(2^{n} z\right)}{2^{n}}=d(z)-z d(e)$. Thus if $\delta(z)=d(z)-z d(e)$, we have

$$
\delta(x+y)=d(x)+d(y)-x d(e)-y d(e)=\delta(x)+\delta(y)
$$

Hence we show that $\delta$ is additive.
Let $C(z, w)=f(-z w)+z f(w)+g(z) w$. Since $f$ and $g$ satisfies the inequality given in (2.10), $\lim _{n \rightarrow \infty} \frac{C\left(2^{n} z, w\right)}{2^{n}}=0$. We note that

$$
\begin{aligned}
& d(-z w)=\lim _{n \rightarrow \infty} \frac{f\left(-2^{n} z \cdot w\right)}{2^{n}} \\
& \quad=\lim _{n \rightarrow \infty} \frac{-2^{n} z f(w)-g\left(2^{n} z\right) w+C\left(2^{n} z, w\right)}{2^{n}}=-z f(w)-\delta(z) w
\end{aligned}
$$

Hence by the oddness of $d$, we obtain that

$$
\begin{equation*}
d(z w)=z f(w)+\delta(z) w \tag{2.11}
\end{equation*}
$$

Since $\delta$ is additive, we can rewrite the equation (2.11) as

$$
d\left(2^{n} z \cdot w\right)=2^{n} z f(w)+2^{n} \delta(z) w, d\left(z \cdot 2^{n} w\right)=z f\left(2^{n} w\right)+2^{n} \delta(z) w
$$

From the above relations, one can have $z f(w)=z \frac{f\left(2^{n} w\right)}{2^{n}}$. In addition, we can obtain $z f(w)=z d(w)$ as $n \rightarrow \infty$. If $z=e$, we also have that $f=d$. Therefore we have $f(z w)=z f(w)+\delta(z) w$.

We now want to show that $\delta$ is derivation using the equations developed in the previous. Indeed,

$$
\delta(x y)=x f(y)+\delta(x) y-x y f(e)=x \delta(y)+\delta(x) y
$$

which means that $f$ is the generalized derivation.
Our task is to prove that $g$ is the derivation: Let us replace $w$ by $2^{n} w$ in $(2.10)$ and multiply by $\frac{1}{2^{n}}$. Then we have

$$
\left\|\frac{f\left(-2^{n} z w\right)}{2^{n}}+z \frac{f\left(2^{n} w\right)}{2^{n}}+g(z) w\right\| \leq \frac{\theta}{2^{n}}
$$

As $n \rightarrow \infty$, we get $d(z w)=z d(w)+g(z) w$, and thus if $w=e$, we see that $g(z)=d(z)-z d(e)=\delta(z)$. Thus $g$ is the derivation as well. The proof of the theorem is complete.

## References

[1] R. Badora, On Approximate derivations, Math. Inequal. Appl. 1 (2006), 1671731.
[2] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.
[3] T. Miura, G. Hirasawa and S.-E. Takahasi, A perturbation of ring derivations on Banach algebras, J. Math. Anal. Appl. 319 (2006), 522-530.
[4] Th. M. Rassias, On the stability of linear mappings in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[5] P. Šemrl, The functional equation of multiplicative derivation is superstable on standard operator algebras, Integr. Equat. Oper. Theory 18 (1994), 118-122.
[6] S. M. Ulam, A Collection of Mathematical Problems, Interscience Publishers, New York, 1968, p. 63.
*
Department of Mathematics
Mokwon University
Daejon 305-729, Republic of Korea
E-mail: ischang@mokwon.ac.kr

