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FUNCTIONAL INEQUALITIES CONNECTED WITH A
DERIVATION AND A GENERALIZED DERIVATION

Ick-SooN CHANG*

ABSTRACT. In this article, we investigate the functional inequalities
concerned with a derivation and a generalized derivation.

1. Introduction

The stability problem of functional equations has originally been for-
mulated by S. M. Ulam [6] in 1940: Under what condition does there
exists a homomorphism near an approximate homomorphism? In fol-
lowing year, D. H. Hyers [2] answers the problem of Ulam under the
assumption that the groups are Banach spaces. A generalized version of
the theorem of Hyers for approximately linear mappings was given by
Th. M. Rassias [4]. Since then, a great deal of work has been done by
a number of authors.

Let A be an algebra. An additive mapping v : A — A is called a ring
derivation if p(zy) = xu(y) + p(x)y holds for all z,y € A. An additive
mapping p : A — A is said to be a ring generalized derivation if there
exists a ring derivation ¢ : A — A satisfying u(zy) = zu(y) + 6(x)y is
fulfilled for all x,y € A.

In particular, the stability result concerning derivations between op-
erator algebras was first obtained by P. Semrl [5]. Moreover, the Hyers-
Ulam stability of ring derivations was studied and investigated by R.
Badora and T. Miura et al. [1, 3].

The main purpose of this article is to establish the functional in-
equalities associated with the ring derivation and the ring generalized
derivation.
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2. Stability of a derivation and a generalized derivation

THEOREM 2.1. Let A be a Banach algebra. Suppose that a function
f+ A — A satisfies the inequality

21 fe+y—zw) = fle—y)+2f(-y) + 2f(w) + f(RJw]| < 0

for all x,y, z,w € A and f(0) = 0. Then there exists a ring derivation d :
A — A such that || f(z)—d(z)|| < 20 forallz € A and z(f(y)—d(y)) =0
for all x,y € A.

Proof. Let us take w = 0 in (2.1), then it becomes

(2.2) If(z+y) = flz—y)+2f(=y)ll < 0.
If x =0and y = —x in (2.2), it follows that

(2.3) 1f (=) + f@)] < 0.
Substituting = and y with —x in (2.2), then we have
(2.4) 1f(=22) + 2f ()] < 6.

Combining (2.3) and (2.4), one can easily get that ||2f(z)— f(2z)] < 26,
and so we obtain the inequality || ! ( z) _ f(@)|| < 6. An induction implies
that

s s e

For n > m, the relation (2.5) can be rewritten

(SR T A Tl
on m om gn—m

1 1
S g (1 B 2n—m)9'

As m — oo, it can be easily verified that {5

- f"a)|

f(2 x)

} 1s a Cauchy sequence.
Since A is complete, the Cauchy sequence {f } converges. Thus if
d(z) = limy, 00 f(2 %) for all z € A, then we have [|f(z) —d(z)|| <260
as n — oo in (2. 5) Replacing x and y with 2”2 and 2"y in (2.2),
respectively, and then dividing both sides by 2". We get
Hf(2”(:v+y)) B f(2"(w—y)) 2f H
2n 2n - 2”
As n — oo in the above inequality, we also get

(2.6) dz+y) —d(xz —y)+2d(—y) = 0.
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The equation (2.6) can be more simplified as d(y)+d(—y) = 0 if we take
x = 0. This implies that d is an odd function and d(0) = 0. Similarly,
substituting y = x into (2.6), we obtain that d(2x) = 2d(z). Let u = z+y
and v = z — y in the equation (2.6), then we can rewrite the equation
(2.6) as d(u) — d(v) + 2d(—*5%) = 0 and by putting v := —wv in this
equation, we have

2.7) 2d (" ;r %) = d(w) + d(v).
Hence if we set u = 2z and v = 2y in (2.7) and use the equation

d(2x) = 2d(x), we finally obtain d(z + y) = d(x) + d(y), and so we can
conclude that d is additive.

We claim that d is unique: Suppose that there exists another additive
function D : X — Y satisfying the inequality || D(x) —d(x)|| < 26. Since
D(2"x) = 2"D(x) and d(2"x) = 2"d(z), we see that

1D () — d(z)[| = 2%||D(2%) —d(2"z)]|

1 1
< 5 lIDE%) = f(2"2) | + [ f(2"2) — d(2"2)|l] < 570
By letting n — oo in this inequality, we have D = d.
We finally assert that d is the derivation: Let us take x = y = 0 in
(2.1). Then it follows that

(2.8) 1f(~2w) + 2 (w) + f(2)w] <.

Define C(z,w) = f(—zw)+zf(w)+ f(z)w. Since C' is bounded, we have
lim,, oo 202 — (. Observed that

2TL
d(—zw) = lim f(_z;z )
_ nlL)H;O 2"z f(w) — f(22"nz)w +C(2"z,w) — o f(w) — d(2)w.

Based on the fact that d is a odd function, d(zw) = zf(w) +d(z)w. Now
this equation can be rewritten as

d2"z-w) =2"zf(w) + 2"d(z)w, d(z-2"w) = zf(2"w) + 2"d(2)w.

Hence zf(w) = zf(ézw), and then we obtain zf(w) = zd(w) as n — oc.
So the assertion follows, which ends the proof of the theorem. O

From Theorem 2.1, we obtain the following corollary.
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COROLLARY 2.2. Let A be a Banach algebra with the unit. Suppose
that a function f : A — A satisfies the inequality (2.1) and f(0) = 0.
Then f is a ring derivation

THEOREM 2.3. Let A be a Banach algebra with the unit. Suppose
f+A— Ais a function with f(0) = 0 for which there exists a function
g: A — A such that

(29)  |f(z+y—2w) = flz—y)+2f(~y) + 2f(w) + g(x)w| < 0.

for all xz,y,z,w € A. Then f is a generalized derivation and g is a
derivation.

Proof. Substituting w = 0 in (2.9), we get the inequality (2.2). Using

the facts provided in the proof of Theorem 2.1, there is a unique additive
f2"z)
PIO

mapping d satisfying || f(z) — d(z)|| < 26, where d(z) = lim,, 0o
If we take x =y = 0 in (2.9), we also have
(2.10) [f(=zw) + zf(w) + g(2)w]| < 0.

Moreover, if we replace z and w with 2"z and 2"w, respectively in (2.10)
and then divide both sides by 227, we get

f(=22"2w) | f(2"w) | g(2"2)
H S TR T wHSﬁHO’
as n — oo. Hence it implies that
27L
lim 9 Z)w = —d(—zw) — zd(w) = d(zw) — zd(w),

n—oo 27
because d is the odd function. Suppose that w = e(unit) in the above
equation, then it follows that lim, g(;:z) = d(z) — zd(e). Thus if
d(z) = d(z) — zd(e), we have

8(z +y) = d(z) + d(y) — wd(e) — yd(e) = () + 0(y)-

Hence we show that ¢ is additive.
Let C(z,w) = f(—2w) + zf(w) + g(z)w. Since f and g satisfies the

inequality given in (2.10), lim, C(Q;f’w) = 0. We note that
o faw)
d—sw) = Jim S
2" —g(2" c@2n
o 2 =@ O@ )
n—oo on

Hence by the oddness of d, we obtain that
(2.11) d(zw) = zf(w) + d(2)w.
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Since ¢ is additive, we can rewrite the equation (2.11) as
d2"z-w) =2"zf(w) +2"0(z)w, d(z-2"w) = zf(2"w) + 2" (z)w.

From the above relations, one can have zf(w) = zw In addition,
we can obtain zf(w) = zd(w) as n — oo. If z = e, we also have that
f = d. Therefore we have f(zw) = zf(w) + §(z)w.

We now want to show that J is derivation using the equations devel-
oped in the previous. Indeed,

5(zy) = xf(y) + 6(x)y — zyfle) = x0(y) + 6(x)y,
which means that f is the generalized derivation.

Our task is to prove that g is the derivation: Let us replace w by 2w
in (2.10) and multiply by 2% Then we have

fe2ew) M) 0
H T +g(z)wH =g

As n — oo, we get d(zw) = zd(w) + g(2)w, and thus if w = e, we see

that g(z) = d(z) — zd(e) = 6(z). Thus g is the derivation as well. The

proof of the theorem is complete. O
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