JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume **21**, No. 1, March 2008

ON THE HIGH-ORDER CONVERGENCE OF THE *k*-FOLD PSEUDO-CAUCHY'S METHOD FOR A SIMPLE ROOT

Young Ik Kim*

ABSTRACT. In this study the k-fold pseudo-Cauchy's method of order k+3 is proposed from the classical Cauchy's method defined by an iteration $x_{n+1} = x_n - \frac{f'(x_n)}{f''(x_n)} \cdot \left(1 - \sqrt{1 - 2f(x_n)f''(x_n)/f'(x_n)^2}\right)$. The convergence behavior of the asymptotic error constant is investigated near the corresponding simple zero. A root-finding algorithm with the k-fold pseudo-Cauchy's method is described and computational examples have successfully confirmed the current analysis.

1. Introduction

Let a function $f : \mathbb{R} \to \mathbb{R}$ have a simple real zero α and be sufficiently smooth in a neighborhood of α . The aim of this study is to locate α accurately with a high-order method. To this end we first transform the equation f(x) = 0 into an equivalent form x - g(x) = 0, where $g : \mathbb{R} \to \mathbb{R}$ is assumed to be sufficiently smooth in a neighborhood of α . Then an approximated α is to be sought within a prescribed error bound using an iterative scheme

(1.1)
$$x_{n+1} = g(x_n), \ n = 0, \ 1, \ 2, \cdots$$

where $x_0 \in \mathbb{R}$ is given. For a given $p \in \mathbb{N}$, we further assume that

(1.2)
$$\begin{cases} \left| \frac{d^p}{dx^p} g(x) \right|_{x=\alpha} = |g^{(p)}(\alpha)| < 1, & \text{if } p = 1. \\ g^{(i)}(\alpha) = 0 \text{ for } 1 \le i \le p-1 \text{ and } g^{(p)}(\alpha) \ne 0, & \text{if } p \ge 2. \end{cases}$$

Received February 05, 2008.

2000 Mathematics Subject Classification: 65H05, 65H99.

Key words and phrases: $k\mbox{-}{\rm fold}$ pseudo-Cauchy's method, order of convergence, asymptotic error constant.

This author was supported by the research fund of Dankook University in 2006.

Under the assumption that x_n belongs to a sufficiently small neighborhood of α for $n \in \mathbb{N} \cup \{0\}$, Taylor series [1,8] expansion about α yields

(1.3)
$$x_{n+1} = g(x_n) = g(\alpha) + g^{(p)}(\xi) \ (x_n - \alpha)^p / p!,$$

where $\xi \in (a, b)$ with $a = \min(\alpha, x_n)$ and $b = \max(\alpha, x_n)$. Since g is continuous at α , we find that for all given $\epsilon > 0$, there exists a number $\delta > 0$ such that

(1.4)
$$|x_{n+1} - \alpha| = |g(x_n) - g(\alpha)| = |g^{(p)}(\xi)| \frac{|(x_n - \alpha)^{p-1}|}{p!} |x_n - \alpha| < \epsilon,$$

whenever $|x_n - \alpha| < \delta$. Let $\mathbf{J} = \{x : |x - \alpha| \le \delta\}$. The continuity of $g^{(p)}$ on \mathbf{J} ensures the existence of a number M > 0 satisfying $|g^{(p)}(x)| \le M$ for all $x \in \mathbf{J}$. Choose

$$\delta = \begin{cases} \min(\epsilon, 1/M), \text{ if } p = 1.\\ \left\{\min(\epsilon^{p-1}, p!/M)\right\}^{1/(p-1)}, \text{ if } p \ge 2. \end{cases}$$

Then $|x_{n+1} - \alpha| = |g(x_n) - g(\alpha)| \le |x_n - \alpha|$. Hence $g : \mathbf{J} \to \mathbf{J}$. Since $|x_n - \alpha| < \delta$, it follows from (1.4) that

(1.5)
$$|x_{n+1} - \alpha| \le |g(x_n) - g(\alpha)| \le K |x_n - \alpha|,$$

where $0 < K = \sup\{M | (x_n - \alpha)|^{p-1}/p! : n \in \mathbb{N} \cup \{0\}\} < M\delta^{p-1}/p! \leq 1$ for $p \geq 2$. If p = 1, then K = M < 1 can be chosen according to (1.2). Hence g is contractive on J for any $p \in \mathbb{N}$ and the sequence $\{x_n\}_{n=0}^{\infty}$ with $x_0 \in J$ defined by (1.1) converges to a fixed point $\alpha \in J[6]$. Now introducing $e_n = x_n - \alpha$ with the fact that $\lim_{n\to\infty} \xi = \alpha$, for the iterative method (1.1) we obtain the asymptotic error constant η and order of convergence p[2,9] as follows:

(1.6)
$$\eta = \lim_{n \to \infty} \left| \frac{e_{n+1}}{e_n^p} \right| = |g^{(p)}(\alpha)| / p!.$$

Now for an arbitrarily given $x \in \mathbb{R}$, under the further assumption that $f''(\alpha) \neq 0$ we define a function $F : \mathbb{R} \to \mathbb{R}$ by

(1.7)
$$F(w) = w - \frac{f'(x)}{f''(x)} \cdot \left(1 - \sqrt{1 - \frac{2f(w)f''(x)}{f'(x)^2}}\right)$$

such that (1.7) is well-defined in a sufficiently small neighborhood of α . Let $w_0 = F(x)$, and let $w_k(x)$ be recursively defined for $k \in \mathbb{N}$ by

(1.8)
$$w_k(x) = F(w_{k-1}) = w_{k-1} - \frac{f'(x)}{f''(x)} \cdot \left(1 - \sqrt{1 - \frac{2f((w_{k-1})f''(x))}{f'(x)^2}}\right)$$

Convergence of the *k*-fold Pseudo-Cauchy's method

Hence $w_k(x) = F^k(w_0) = F^{k+1}(x)$ for $k \in \mathbb{N}$, where we denote F^k by $F^k(w_0) = F(F(\cdots F(w_0) \cdots))$. Then the iterative scheme with $x_0 \in \mathbb{R}$

(1.9)
$$x_{n+1} = F^{k+1}(x_n) = g(x_n)$$

is called the *k*-fold pseudo-Cauchy's method. If k = 0, it is called the Cauchy's method and has the cubic convergence as shown in Laguerre-type numerical methods[6,7] including Halley's method and leap-frogging Newton's method[3,5]. If k = 1, it is simply called the pseudo-Cauchy's method.

2. Convergence analysis

By virtue of $f'(\alpha) \neq 0$ and $f''(\alpha) \neq 0$, Equation (1.8) shows that

(2.1)
$$w_k(\alpha) = \alpha, \text{ for all } k \in \mathbb{N} \cup \{0\},\$$

(2.2)
$$w_0'(\alpha) = w_0''(\alpha) = 0, \ w_0'''(\alpha) = -f'''(\alpha)/f'(\alpha).$$

Further analysis with the above results leads to Lemma 2.1:

LEMMA 2.1. Let $w_k^{(m)}(\alpha) = \frac{d^m}{dx^m} w_k(x)|_{x=\alpha}$ for any $k, m \in \mathbb{N} \cup \{0\}$. For the given function f with a simple zero α , as described in Section 1, let $c = f''(\alpha)/f'(\alpha)$ and $d = -f'''(\alpha)/f'(\alpha)$. In addition, let $H = f(w_{k-1}(x)), \ G = \sqrt{f'(x)^2 - 2H \cdot f''(x)}$ for $k \in \mathbb{N}$. Then the following relations hold:

(2.3)
$$w_k^{(m)}(\alpha) = \begin{cases} \alpha, & \text{if } m = 0.\\ 0, & \text{if } 1 \le m \le k+2.\\ \frac{(k+3)!}{3!}c^kd, & \text{if } m = k+3. \end{cases}$$

(2.4)
$$H^{(m)}(\alpha) = \begin{cases} 0, & \text{if } 0 \le m \le k+2. \\ f'(\alpha) & w_{k-1}^{(m)}(\alpha), & \text{if } m = k+2, k+3. \end{cases}$$

(2.5)

$$G^{(m)}(\alpha) = \begin{cases} f^{(m+1)}(\alpha) , & if \ 0 \le m \le k+1, \\ f^{(k+3)}(\alpha) - f''(\alpha) \ w^{(k+2)}_{k-1}(\alpha) , & if \ m = k+2, \\ f^{(k+4)}(\alpha) - f''(\alpha) \ w^{(k+3)}_{k-1}(\alpha) \\ + (k+3) \ w^{(k+2)}_{k-1}(\alpha) \Big(\frac{f''(\alpha)^2}{f'(\alpha)} - f'''(\alpha) \Big), & if \ m = k+3. \end{cases}$$

Proof. If k = 0, then the assertion (2.3) is clear from (2.1) and (2.2). Hence it suffices to consider $k \in \mathbb{N}$. If m = 0, then equation (2.1) immediately gives the assertion. The remaining proof will be given based on induction on $m \ge 0$. We rewrite (1.8) to obtain for $k \in \mathbb{N}$

(2.6)
$$\eta_k \cdot f'' + f' = G,$$

where $\eta_k = w_k(x) - w_{k-1}(x)$, f' = f'(x), f'' = f''(x). It is easily shown that $G(\alpha) = f'(\alpha)$.

Suppose now (2.3), (2.4) and (2.5) hold for $m \ge 0$. As a result, we assume the following:

(2.7)
$$w_{k-1}^{(m)}(\alpha) = \begin{cases} \alpha, & \text{if } m = 0. \\ 0, & \text{if } 1 \le m \le k+1. \\ \frac{(k+2)!}{3!} c^{k-1} d, & \text{if } m = k+2 \end{cases}$$

By differentiating (m+1) times both sides of (2.6) with respect to x via Leibnitz Rule[8] and evaluating at $x = \alpha$ we obtain

(2.8)
$$\sum_{r=0}^{m+1} {}_{m+1}C_r \cdot \eta_k^{(r)}(x) \cdot f^{(m+3-r)}(x) \Big|_{x=\alpha} + f^{(m+2)}(\alpha) = G^{(m+1)}(\alpha),$$

where ${}_{m}C_{r} = \frac{m!}{(m-r)!r!}$. Since $w_{k}^{(r)}(\alpha) - w_{k-1}^{(r)}(\alpha) = 0$ for $0 \le r \le m-1 \le k+1$, the leftmost side of (2.8) has possible nonvanishing terms for r = m and r = m + 1 as follows:

(2.9)
$$\begin{array}{rcl} -(m+1)f'''(\alpha) \cdot w_{k-1}^{(m)}(\alpha) &+ f''(\alpha) \cdot \left(w_k^{(m+1)}(\alpha) - w_{k-1}^{(m+1)}(\alpha)\right) \\ &+ f^{(m+2)}(\alpha) &= G^{(m+1)}(\alpha) \end{array}$$

in view of the induction hypothesis that $w_k^{(m)}(\alpha) = 0$ for $1 \le m \le k+2$. To get the right side of (2.8), we consider the following identity:

(2.10)
$$G^2 = f'(x)^2 - 2 H f''(x).$$

Now suppose (2.4) holds for $m \ge 0$. Since $H'(x) = f'(w_{k-1}(x)) w_{k-1}'(x)$, we find that

(2.11)
$$H^{(m+1)}(\alpha) = H'^{(m)}(x)\Big|_{x=\alpha}$$
$$= \sum_{r=0}^{m} {}_{m}C_{r} \cdot w_{k-1}^{(r+1)}(\alpha) \cdot \left[f'\left(w_{k-1}(x)\right)\right]^{(m-r)}\Big|_{x=\alpha}$$

If m = 0, then (2.11) holds by the induction hypothesis. If $1 \le m \le k$, then $w_{k-1}^{(r+1)}(\alpha) = 0$ holds for $0 \le r \le m-1 \le k-1$ by the induction hypothesis and yields $H^{(m+1)}(\alpha) = 0$. If m = k+1, then the

110

only term for r = m on the right side of (2.11) gives us $H^{(m+1)}(\alpha) = w_{k-1}^{(m+1)}(\alpha) f'(\alpha)$. If m = k+2, then the two terms for r = m-1 and r = m on the right side of (2.11) gives us $H^{(m+1)}(\alpha) = w_{k-1}^{(m+1)}(\alpha) f'(\alpha) + m w_{k-1}^{(m)}(\alpha) \left[f'(w_{k-1}(x)) \right]' \Big|_{x=\alpha} = f'(\alpha) w_{k-1}^{(m+1)}(\alpha)$ in view of the induction hypothesis $w_{k-1}'(\alpha) = 0$ for $k \ge 1$. Hence (2.4) holds for $m+1 \in \mathbb{N}$, which completes the induction proof to (2.4).

We next wish to prove (2.10). To this end, we first let F(x) = f'(x) to obtain the identity:

(2.12)
$$G^2 = F(x)^2 - 2 H F'(x).$$

. 1

Differentiating both sides of (2.12) m + 1 times with respect x via Leibnitz Rule[8] and evaluating at $x = \alpha$, we get the following identity:

(2.13)
$$\sum_{r=0}^{m+1} {}_{m+1}C_r \left(G^{(r)}G^{(m+1-r)} - F^{(r)}F^{(m+1-r)} \right) \\ = -2\sum_{r=0}^{m+1} {}_{m+1}C_r H^{(r)} F^{(m+2-r)},$$

where $G^{(j)} = G^{(j)}(\alpha)$, $F^{(j)} = F^{(j)}(\alpha)$ and $H^{(j)} = H^{(j)}(\alpha)$ for $0 \le j \le m + 1$ and further $G^{(0)} = G$, $F^{(0)} = F$ and $H^{(0)} = H$. Let T_m denote the left side of (2.13). Combining the first with last terms from T_m and denoting the sum of remaining terms by S_m , we find

(2.14)
$$T_m = 2 G \left(G^{(m+1)} - F^{(m+1)} \right) + S_m,$$

where

(2.15)

$$S_m = \begin{cases} 0, \text{ if } m = 0.\\ \sum_{r=1}^m m+1 C_r \left(G^{(r)} G^{(m+1-r)} - F^{(r)} F^{(m+1-r)} \right), \text{ if } 1 \le m \le k. \end{cases}$$

Using (2.4) in the right side of (2.13), we find the proof to (2.5) as follows:

(1) if
$$m = 0$$
, then $0 = T_0 = 2 G (G' - F')$, which yields $G' - F' = 0$
(2) if $m = 1$, then $0 = T_1 = 2 G (G'' - F'') + S_1$, where
 $S_1 = {}_2C_1 \cdot G' (G' - F') = 0$.
As a result, we find that $G'' - F'' = 0$.
(3) if $m = 2$, then $0 = T_2 = 2 G (G''' - F''') + S_2$, where

$$S_{2} = {}_{3}C_{1} \cdot G'(G'' - F'') + {}_{3}C_{2} \cdot G''(G' - F') = 0. \text{ As a result}, we find that $G''' - F''' = 0.$
(4) Continuing in this manner, we obtain, for $0 \le m \le k,$
(2.16) $G^{(m+1)} = F^{(m+1)}.$
(5) if $m = k + 1$, then
 $T_{k+1} = 2 G \left(G^{(k+2)} - F^{(k+2)}\right) = -2H^{(k+2)} \cdot f''(\alpha), \text{ which yields}$
(2.17) $G^{(k+2)} = F^{(k+2)} - f''(\alpha) w_{k-1}^{(k+2)}(\alpha)$
using $H^{(k+2)} = f'(\alpha) w_{k-1}^{(k+2)}(\alpha).$
(6) if $m = k + 2$, then $T_{k+2} = 2 G \left(G^{(k+3)} - F^{(k+3)}\right) + S_{k+2}.$
By virtue of the identity $S_{k+2} = 2 (k+3) G' \left(G^{(k+2)} - F^{(k+2)}\right),$
we finally obtain$$

(2.18)

$$G^{(k+3)} = F^{(k+3)} - f''(\alpha) \ w_{k-1}^{(k+3)}(\alpha) + (k+3) \ w_{k-1}^{(k+2)}(\alpha) \Big(\frac{f''(\alpha)^2}{f'(\alpha)} - f'''(\alpha)\Big).$$

To prove (2.3), we first find that $w_k^{(m+1)}(\alpha) = 0$ for $0 \le m \le k$ by the induction hypothesis. Comparing (2.18) with the left side of (2.9) when m = k + 2 and simplifying, we obtain:

$$w_k^{(m+1)}(\alpha) = c(m+1) \ w_{k-1}^{(m)}(\alpha).$$

Hence it follows that

(2.19)
$$w_k^{(m+1)}(\alpha) = \begin{cases} 0, \text{ if } 2 \le m+1 \le k+2, \\ c \ (m+1) \ w_{k-1}^{(m)}(\alpha), \text{ if } m+1=k+3. \end{cases}$$

It is also found for m + 1 = k + 3 that

$$(2.20) w_k^{(m+1)}(\alpha) = w_k^{(k+3)}(\alpha) = c(k+3) \ w_{k-1}^{(k+2)}(\alpha) = c^2 \ (k+3)(k+2) \ w_{k-2}^{(k+1)}(\alpha) = (k+3)(k+2)(k+1) \cdots 4 \cdot 3 \cdots c^k \cdot w_0''(\alpha) = \frac{(k+3)!}{3!} c^k d.$$

Thus (2.3) also holds for $m + 1 \in \mathbb{N}$, from which the induction proof is completed. \Box

As a consequence of the preceding analysis, we have proved the following theorem.

THEOREM 2.2. Let $k \in \mathbb{N} \cup \{0\}$ be given and α be a simple zero of the smooth function f described in Section 1. Then the k-fold pseudo-Cauchy's method defined by (1.9) is at least of order k + 3 and its asymptotic error constant η is given by $|c^k d|/6$, where $c = f''(\alpha)/f'(\alpha)$ and $d = -f'''(\alpha)/f'(\alpha)$.

Proof. Let $g(x) = w_k(x) = F^{k+1}(x)$ and define the iteration $x_{n+1} = g(x_n)$ with $x_0 \in J$ and the error $e_n = x_n - \alpha$ for $n \in \mathbb{N} \cup \{0\}$. Then g is contractive on J and Lemma 2.1 yields the asymptotic error constant η and the order of convergence p in view of (1.6)

(2.21)
$$\eta = \lim_{n \to \infty} \left| \frac{e_{n+1}}{e_n^{k+3}} \right| = \frac{1}{(k+3)!} |w_k^{(k+3)}(\alpha)| = \frac{1}{6} |c^k| d|,$$

which completes the proof.

3. Algorithm and numerical results

The theory presented in Sections 1 and 2 will be verified here with a zero-finding algorithm coded by *Mathematica*[10] along with some numerical experiments.

Algorithm 3.1 (Zero-Finding Algorithm)

Step 1. For $k \in \mathbb{N} \cup \{0\}$, construct the iteration function $g = F^{k+1}$ with the given function f having a simple real zero α , according to the description in Section 1.

Step 2. Set the minimum number of precision digits. With exact zero or most accurate zero α , supply the theoretical asymptotic error constant η . Set the error range ϵ , the maximum iteration number n_{max} and the initial value x_0 . Compute $f(x_0)$ and $|x_0 - \alpha|$.

Step 3. Compute $x_{n+1} = g(x_n)$ for $0 \le n \le n_{max}$ and display the computed values of $n, x_n, f(x_n), |x_n - \alpha|, |e_{n+1}/e_n^{k+3}|$ and η .

To achieve sufficient accuracy, the minimum number of precision digits was selected between 250 and 700 by assigning the value of \$Min-Precision in Mathematica. The error bound ϵ for $|x_n - \alpha| < \epsilon$ was chosen small enough up to 0.5×10^{-675} for the current experiment. Table 1 illustrates the order of convergence as well as the asymptotic error constant for a nonlinear function

$$f(x) = e^{-x} \sin x + \ln[1 + (x - \pi)^2]$$

that has a simple zero $\alpha = \pi$ and $f''(\alpha) \neq 0$. The number of computation is observed to get smaller as k increases due to high-order convergence.

Table	1.	Convergence	of	k-fold	pseudo-Cauchy's
Method	for	$f(x) = e^{-x} \sin x$	x +	$\ln[1+(x$	$(x - \pi)^2$]

k	n	x_n	$f(x_n)$	$ x_n - \alpha $	e_{n+1}/e_n^{k+3}	η
	0	2.600000000000000	0.295503	0.541593		
	1	2.99547951767754	0.0284059	0.146113	0.9197524800	
	2	3.13204679372873	0.000507584	0.00954586	3.060182090	
0	3	3.14159265536030	-7.65103×10^{-11}	1.77050×10^{-9}	0.0020354069	0.33333333333
	4	3.14159265358979	7.99451×10^{-29}	1.84998×10^{-27}	0.3333333948	
	5	3.14159265358979	-9.12025×10^{-83}	2.11049×10^{-81}	0.33333333333	
	6	3.14159265358979	1.35410×10^{-244}	3.13349×10^{-243}	0.33333333333	
	7	3.14159265358979	$0. \times 10^{-300}$	$0. \times 10^{-299}$		
	0	2.600000000000000	0.295503	0.541593		
	1	3.02620460595904	0.0188104	0.115388	1.341126568	
	2	3.13790281432158	0.000173656	0.00368984	20.81441205	
1	3	3.14159265514911	-6.73841×10^{-11}	1.55931×10^{-9}	8.412089525	16.09379509
	4	3.14159265358979	-4.11166×10^{-36}	9.51466×10^{-35}	16.09379891	
	5	3.14159265358979	$-5.69974 \times 10^{-137}$	1.31896×10^{-135}	16.09379509	
	6	3.14159265358979	$0. \times 10^{-300}$	$0. \times 10^{-299}$		
	0	2.60000000000000	0.295503	0.541593		
	1	3.04643915130075	0.0135291	0.0951535	2.042024527	
	2	3.14012436140057	0.0000656997	0.00146829	188.2298946	
2	3	3.14159265359371	-1.69275×10^{-13}	3.91714×10^{-12}	573.9936360	777.0307211
	4	3.14159265358979	3.09677×10^{-56}	7.16615×10^{-55}	777.0307217	
	5	3.14159265358979	$-6.34586 \times 10^{-270}$	1.46848×10^{-268}	777.0307211	
	6	3.14159265358979	$0. \times 10^{-300}$	$0. \times 10^{-299}$		
	0	2.600000000000000	0.295503	0.541593		
	1	3.06094908935581	0.0102558	0.0806436	3.195458088	
	2	3.14100601394565	0.0000257100	0.000586640	2132.814690	
3	3	3.14159265358979	-5.70585×10^{-17}	1.32037×10^{-15}	32394.25364	37516.11961
	4	3.14159265358979	-8.59053×10^{-87}	1.98791×10^{-85}	37516.11961	
	5	3.14159265358979	$0. \times 10^{-300}$	$0. \times 10^{-299}$		
	0	2.600000000000000	0.295503	0.541593		
	1	3.07192827684424	0.00806645	0.0696644	5.096844722	
	2	3.14136073712516	0.0000100781	0.000231916	29124.35323	
4	3	3.14159265358979	-2.63627×10^{-21}	6.10051×10^{-20}	1690617.199	1811330.224
	4	3.14159265358979	2.46142×10^{-130}	5.69590×10^{-129}	1811330.224	
	5	3.14159265358979	$0. \times 10^{-300}$	$0. \times 10^{-299}$		
	0	2.600000000000000	0.295503	0.541593		
5	1	3.08055308669244	0.00652095	0.0610396	8.245734090	
	2	3.14150292389386	3.88597×10^{-6}	0.0000897297	465633.9615	
	3	3.14159265358979	-1.53968×10^{-26}	3.56293×10^{-25}	84784646.40	87453532.41
	4	3.14159265358979	$-9.81421 \times 10^{-190}$	2.27108×10^{-188}	87453532.41	
	5	3.14159265358979	$0. \times 10^{-300}$	$0. \times 10^{-299}$		

For each $0 \le k \le 5$, the order of convergence has been confirmed to be of at least k+3. As the second numerical example, we take $f(x) = \cos x - x$ with a simple zero

 $\alpha = 0.7390851332151606416553120876738734040134 \cdots 002409803355672730892,$

which is found to be accurate up to 700 significant decimal digits from the Mathematica command *FindRoot with options WorkingPrecision* \rightarrow 1400, *AccuracyGoal* \rightarrow 700. Table 2 also reveals a good agreement with the theory discussed in this paper. The computed asymptotic error constants were found to be in good agreement with the theory. The

TABLE 2. Convergence of k-fold pseudo-Cauchy's Method for $f(x) = \cos x - x$

k	n	x_n	$f(x_n)$	$ x_n - \alpha $	$ e_{n+1}/e_n^{k+3} $	η
	0	0.6000000000000000	0.225336	0.139085		
	1	0.738926849807921	0.000264896	0.000158283	0.05882924272	
	2	0.739085133214895	4.45152×10^{-13}	2.65983×10^{-13}	0.06707292075	0.06708165905
0	3	0.739085133215161	2.11261×10^{-39}	1.26230×10^{-39}	0.06708165905	
	4	0.739085133215161	2.25814×10^{-118}	1.34926×10^{-118}	0.06708165905	
	5	0.739085133215161	2.75769×10^{-355}	1.64775×10^{-355}	0.06708165905	
	6	0.739085133215161	$0. \times 10^{-699}$	$0. \times 10^{-700}$		
	0	0.6000000000000000	0.225336	0.139085		
	1	0.739096143389592	-0.0000184268	0.0000110102	0.02942194343	
	2	0.739085133215161	-7.28576×10^{-22}	4.35331×10^{-22}	0.02962396029	0.02962398456
1	3	0.739085133215161	-1.78065×10^{-87}	1.06395×10^{-87}	0.02962398456	
	4	0.739085133215161	$-6.35317 \times 10^{-350}$	3.79609×10^{-350}	0.02962398456	
	5	0.739085133215161	$0. \times 10^{-699}$	$0. \times 10^{-700}$		
	0	0.600000000000000	0.225336	0.139085		
	1	0.739084366346134	1.28344×10^{-6}	7.66869×10^{-7}	0.01473389746	0.01308227128
2	2	0.739085133215161	5.80690×10^{-33}	3.46968×10^{-33}	0.01308228103	
	3	0.739085133215161	1.10099×10^{-164}	6.57855×10^{-164}	0.01308227128	
	4	0.739085133215161	$0. \times 10^{-699}$	$0. \times 10^{-700}$		
	0	0.6000000000000000	0.225336	0.139085		
	1	0.739085186623453	-8.93848×10^{-8}	5.34083×10^{-8}	0.007377758329	0.005777272176
3	2	0.739085133215161	-2.24404×10^{-46}	1.34083×10^{-46}	0.005777271599	
	3	0.739085133215161	$-5.61859 \times 10^{-278}$	3.35716×10^{-278}	0.005777272176	
	4	0.739085133215161	$0. \times 10^{-699}$	$0. \times 10^{-700}$		
	0	0.6000000000000000	0.225336	0.139085		
	1	0.739085129495538	6.22521×10^{-9}	3.71962×10^{-9}	0.003694315300	0.002551305739
4	2	0.739085133215161	4.20639×10^{-62}	2.51336×10^{-62}	0.002551305766	
	3	0.739085133215161	2.70522×10^{-434}	1.61640×10^{-434}	0.002551305739	
	4	0.739085133215161	$0. \times 10^{-699}$	$0. \times 10^{-700}$		
	0	0.6000000000000000	0.225336	0.139085		
	1	0.739085133474214	-4.33555×10^{-10}	2.59053×10^{-10}	0.001849878907	0.001126684147
5	2	0.739085133215161	-3.82445×10^{-80}	2.28515×10^{-80}	0.001126684146	
	3	0.739085133215161	$-1.40207 \times 10^{-640}$	8.37751×10^{-641}	0.001126684147	
	4	0.739085133215161	$0. \times 10^{-699}$	$0. \times 10^{-700}$		

computed root was rounded to be accurate up to the 250 significant digits. The limited paper space lists only up to 15 significant digits.

The high-order convergence[4] stated in Theorem 1 has been further confirmed with other test functions such as $f(x) = x^2 \sin(\pi x/8) + e^{(x-2)^2} - 1 - 2\sqrt{2}$ ($\alpha = 2$), $f(x) = e^{(x^2+7x-30)} - 1$ ($\alpha = 3$), $f(x) = \sin(\pi x/(2\sqrt{2}) - x^4 + 3)$ ($\alpha = \sqrt{2}$) and many additional numerical experiments. The current numerical scheme can be extended to accurately locate multiple zeros of a given nonlinear algebraic equation.

References

 R. G. Bartle, *The Elements of Real Analysis*, 2nd ed., John Wiley & Sons., New York, 1976.

- [2] S. D. Conte and Carl de Boor, *Elementary Numerical Analysis*, McGraw-Hill Inc., 1980.
- [3] Young Hee Geum, The asymptotic error constant of leap-frogging Newtons method locating a simple real zero, Applied Mathematics and Computation, 189, Issue 1 (2007), 963-969.
- [4] Young Hee Geum, Young Ik Kim and Min Surp Rhee, High-order convergence of the k-fold pseudo-Newtons irrational method locating a simple real zero, Applied Mathematics and Computation, 182, Issue 1 (2006), 492-497.
- [5] A. Bathi Kasturiarachi, Leap-frogging Newton's Method, Int. J. Math. Educ. Sci. Technol. 33 (2002), no. 4, 521-527.
- [6] Qiang Du, Ming Jin, T. Y. Li and Z. Zeng, *The Quasi-Laguerre Iteration*, Mathematics of Computation, **66** (1997), no. 217, 345-361.
- [7] L. D. Petkovic, M. S. Petkovic and D. Zivkovic, Hansen-Patrick's Family Is of Laguerre's Type, Novi Sad J. Math. 33 (2003), no. 1, 109-115.
- [8] Kenneth A. Ross, *Elementary Analysis*, Springer-Verlag New York Inc., 1980.
- [9] J. Stoer and R. Bulirsh, Introduction to Numerical Analysis, 244-313, Springer-Verlag New York Inc., 1980.
- [10] Stephen Wolfram, The Mathematica Book, 4th ed., Cambridge University Press, 1999.

*

Department of Applied Mathematics Dankook University Cheonan 330-714, Republic of Korea *E-mail*: yikbell@yahoo.co.kr