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RECURRENCE RELATIONS OF THE STANDARD
GENERALIZED EXTREME VALUE DISTRIBUTION BY

THE LOWER RECORD VALUES

Se-Kyung Chang*

Abstract. In this paper, we establish some recurrence relations
which is satisfied by the quotient moments of the lower record values
from the standard generalized extreme value (GEV) distribution.

1. Introduction

The record value model was introduced by Chandler [6]. Let X1,
X2, · · · be a sequence of independent and identically distributed (i.i.d.)
random variables with a cumulative distribution function (cdf) F (x) and
a probability density function (pdf) f(x). Suppose Yn = min{X1, X2, · · · ,
Xn} for n ≥ 1. We say Xj , j ≥ 1 is a lower record value of this sequence,
if Yj < Yj−1 for j > 1. And we suppose that X1 is a first lower record
value. The indices at which the lower record values occur are given by
record times {L(n), n ≥ 1}, where L(n) = min{j|j > L(n − 1) , Xj <
XL(n−1) , n ≥ 2} with L(1) = 1.

The cdf of the standard GEV distribution is

(1.1) F (x) =


e−(1−kx)

1
k ,


x <

1
k

when k > 0

x >
1
k

when k < 0


e−e−x

,−∞ < x < ∞ when k = 0
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and the pdf of the standard GEV distribution is

(1.2) f(x) =


(1− kx)

1
k
−1e−(1−kx)

1
k ,


x <

1
k

when k > 0

x >
1
k

when k < 0


e−x e−e−x

,−∞ < x < ∞ when k = 0

A notation that designates that X has the cdf (1.1) is X ∼ GEV (0, 1, k).
Some recurrence relations by the lower record values are known. Ah-

sanullah [1, 2] established recurrence relations for various distributions
by record values. Also, Balakrishnan and Ahsanullah [3] have proved
recurrence relations for the exponential distribution and the generalized
Pareto distribution. Balakrishnan, Ahsanullah and Chan [4, 5] investi-
gated recurrence relations for the Gumbel distribution and the general-
ized extreme value distribution. These recurrence relations satisfied by
the single and product moments of record values.

In this paper, we will show some recurrence relations which is satisfied
by the quotient moments of the lower record values from the standard
GEV distribution.

2. Main theorems

Theorem 2.1. For k 6= 0, 1 ≤ m < n and r, s = 0, 1, 2, · · · ,

E

(
Xs

L(n)

Xr+1
L(m)

)
=

(r + 1)
k(r + 1)−m

E

(
Xs

L(n)

Xr+2
L(m)

)
− m

k(r + 1)−m
E

(
Xs

L(n)

Xr+1
L(m+1)

)
.

Proof. The joint pdf f(m), (n)(x, y) of the lower record values XL(m)

and XL(n) is given by

f(m),(n)(x, y) =
(H(x))m−1h(x)(H(y)−H(x))n−m−1f(y)

Γ(m) Γ(n−m)
,

where H(x) = −ln(F (x)) and h(x) =
(
− d

dx
H(x)

)
=

f(x)
F (x)

.

We have that for the standard GEV in (1.1) and (1.2),

(2.1) (1− kx) f(x) = F (x) H(x).
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Let us consider for k 6= 0, 1 ≤ m < n and r, s = 0, 1, 2, · · · ,

E

(
Xs

L(n)

k Xr+2
L(m)

−
Xs

L(n)

Xr+1
L(m)

)

=
∫ ∫

−∞<y<x<∞

(
ys

k xr+2
− ys

xr+1

)
f(m),(n)(x, y) dx dy

=
∫ ∫

−∞<y<x<∞

ys

kxr+2
(1− kx)

× (H(x))m−1h(x)(H(y)−H(x))n−m−1f(y)
Γ(m) Γ(n−m)

dx dy.

According to (3), we can rewrite the expectation expression as

E

(
Xs

L(n)

k Xr+2
L(m)

−
Xs

L(n)

Xr+1
L(m)

)
=
∫ ∞
−∞

ysf(y)
k Γ(m)Γ(n−m)

×
(∫ ∞

y

1
xr+2

(H(x))m(H(y)−H(x))n−m−1dx

)
dy.

Using integrating by parts treating
1

xr+2
for integration and (H(x))m

(H(y) − H(x))n−m−1 for differentiation on the second integration, we
obtain∫ ∞

y

1
xr+2

(H(x))m(H(y)−H(x))n−m−1dx

=
(n−m− 1)

(r + 1)

∫ ∞
y

1
xr+1

(H(x))mh(x)(H(y)−H(x))n−m−2dx

− m

(r + 1)

∫ ∞
y

1
xr+1

(H(x))m−1h(x)(H(y)−H(x))n−m−1dx.

By the above result, we can write

E

(
Xs

L(n)

k Xr+2
L(m)

−
Xs

L(n)

Xr+1
L(m)

)

=
1

k(r + 1)

∫ ∫
−∞<y<x<∞

ys

xr+1

× (H(x))mh(x)(H(y)−H(x))n−m−2f(y)
Γ(m) Γ(n−m− 1)

dx dy
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− m

k(r + 1)

∫ ∫
−∞<y<x<∞

ys

xr+1

× (H(x))m−1h(x)(H(y)−H(x))n−m−1f(y)
Γ(m) Γ(n−m)

dx dy

=
m

k(r + 1)

∫ ∫
−∞<y<x<∞

ys

xr+1
f(m+1),(n)(x, y) dx dy

− m

k(r + 1)

∫ ∫
−∞<y<x<∞

ys

xr+1
f(m),(n)(x, y) dx dy

=
m

k(r + 1)
E

(
Xs

L(n)

Xr+1
L(m+1)

)
− m

k(r + 1)
E

(
Xs

L(n)

Xr+1
L(m)

)
.

Hence we have

E

(
Xs

L(n)

Xr+1
L(m)

)
=

(r + 1)
k(r + 1)−m

E

(
Xs

L(n)

Xr+2
L(m)

)
− m

k(r + 1)−m
E

(
Xs

L(n)

Xr+1
L(m+1)

)
.

This completes the proof.

Corollary 2.2. For k 6= 0, m ≥ 1 and r, s = 0, 1, 2, · · · ,

E

(
Xs

L(m+1)

Xr+1
L(m)

)
=

(r + 1)
k(r + 1)−m

E

(
Xs

L(m+1)

Xr+2
L(m)

)
− m

k(r + 1)−m
E
(
Xs−r−1

L(m+1)

)
.

Proof. Upon substituting n = m+1 in Theorem 2.1 and simplifying,
then we obtain that

E

(
Xs

L(m+1)

Xr+1
L(m)

)
=

(r + 1)
k(r + 1)−m

E

(
Xs

L(m+1)

Xr+2
L(m)

)
− m

k(r + 1)−m
E
(
Xs−r−1

L(m+1)

)
.

This completes the proof.

Corollary 2.3. For k 6= 0 and m ≥ 1 ,

V (XL(m+1)) =

(
2
m

E

(
X4

L(m+1)

X3
L(m)

)
− (2k −m)

m
E

(
X4

L(m+1)

X2
L(m)

))

−

(
2
m

E

(
X3

L(m+1)

X3
L(m)

)
− (2k −m)

m
E

(
X3

L(m+1)

X2
L(m)

))2

.

Proof. Since the variance V (XL(m+1)) of the lower record value XL(m+1)

is V (XL(m+1)) = E(X2
L(m+1))−

(
E(XL(m+1))

)2
, for the case r = 1 and



Recurrence relations of the standard generalized extreme value distribution 103

s = 3 in Corollary 2.2, we get

E(XL(m+1)) =
2
m

E

(
X3

L(m+1)

X3
L(m)

)
− (2k −m)

m
E

(
X3

L(m+1)

X2
L(m)

)
.

Also, for the case r = 1 and s = 4 in Corollary 2.2, we have

E(X2
L(m+1)) =

2
m

E

(
X4

L(m+1)

X3
L(m)

)
− (2k −m)

m
E

(
X4

L(m+1)

X2
L(m)

)
.

Hence we simply obtain the variance V (XL(m+1)) of the lower record
value XL(m+1). That is,

V (XL(m+1)) =

(
2
m

E

(
X4

L(m+1)

X3
L(m)

)
− (2k −m)

m
E

(
X4

L(m+1)

X2
L(m)

))

−

(
2
m

E

(
X3

L(m+1)

X3
L(m)

)
− (2k −m)

m
E

(
X3

L(m+1)

X2
L(m)

))2

.

This completes the proof.

Theorem 2.4. For k = 0, 1 ≤ m < n, r = 1, 2, · · · and s =
0, 1, 2, · · · ,

E

(
Xs

L(n)

Xr+1
L(m)

)
=

m

r
E

(
Xs

L(n)

Xr
L(m+1)

)
− m

r
E

(
Xs

L(n)

Xr
L(m)

)
.

Proof. In the same manner as Theorem 2.1, we have that for the
standard GEV in (1.1) and (1.2),

(2.2) h(x) = H(x).

Let us consider for k = 0, 1 ≤ m < n, r = 1, 2, · · · and s = 0, 1, 2, · · · ,

E

(
Xs

L(n)

Xr+1
L(m)

)
=
∫ ∫

−∞<y<x<∞

ys

xr+1
f(m),(n)(x, y) dx dy

=
∫ ∫

−∞<y<x<∞

ys

xr+1

(H(x))m−1h(x)(H(y)−H(x))n−m−1f(y)
Γ(m) Γ(n−m)

dx dy.

According to (2.2), we can rewrite the expectation expression as

E

(
Xs

L(n)

Xr+1
L(m)

)
=
∫ ∞
−∞

ysf(y)
Γ(m)Γ(n−m)

×
(∫ ∞

y

1
xr+1

(H(x))m(H(y)−H(x))n−m−1dx

)
dy.
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Using integrating by parts treating
1

xr+1
for integration and (H(x))m

(H(y) − H(x))n−m−1 for differentiation on the second integration, we
obtain∫ ∞

y

1
xr+1

(H(x))m(H(y)−H(x))n−m−1dx

=
(n−m− 1)

r

∫ ∞
y

1
xr

(H(x))m+1(H(y)−H(x))n−m−2dx

− m

r

∫ ∞
y

1
xr

(H(x))m(H(y)−H(x))n−m−1dx.

By the above result, we can write

E

(
Xs

L(n)

Xr+1
L(m)

)

=
1
r

∫ ∫
−∞<y<x<∞

ys

xr

(H(x))m+1(H(y)−H(x))n−m−2f(y)
Γ(m) Γ(n−m− 1)

dx dy

− m

r

∫ ∫
−∞<y<x<∞

ys

xr

(H(x))m(H(y)−H(x))n−m−1f(y)
Γ(m) Γ(n−m)

dx dy

=
m

r

∫ ∫
−∞<y<x<∞

ys

xr
f(m+1),(n)(x, y) dx dy

− m

r

∫ ∫
−∞<y<x<∞

ys

xr
f(m),(n)(x, y) dx dy

=
m

r
E

(
Xs

L(n)

Xr
L(m+1)

)
− m

r
E

(
Xs

L(n)

Xr
L(m)

)
.

Hence we have

E

(
Xs

L(n)

Xr+1
L(m)

)
=

m

r
E

(
Xs

L(n)

Xr
L(m+1)

)
− m

r
E

(
Xs

L(n)

Xr
L(m)

)
.

This completes the proof.

Corollary 2.5. For k = 0, 1 ≤ m < n, r = 1, 2, · · · and s =
0, 1, 2, · · · ,

E

(
Xs

L(m+1)

Xr+1
L(m)

)
=

m

r
E
(
Xs−r

L(m+1)

)
− m

r
E

(
Xs

L(m+1)

Xr
L(m)

)
.
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Proof. Upon substituting n = m+1 in Theorem 2.4 and simplifying,
then we obtain that

E

(
Xs

L(m+1)

Xr+1
L(m)

)
=

m

r
E
(
Xs−r

L(m+1)

)
− m

r
E

(
Xs

L(m+1)

Xr
L(m)

)
.

Corollary 2.6. For k = 0 and m ≥ 1 ,

V (XL(m+1)) =

(
1
m

E

(
X3

L(m+1)

X2
L(m)

)
+ E

(
X3

L(m+1)

XL(m)

))

−

(
1
m

E

(
X2

L(m+1)

X2
L(m)

)
+ E

(
X3

L(m+1)

XL(m)

))2

.

Proof. In the same manner as Corollary 2.3, for the case r = 1 and
s = 2 in Corollary 2.5, we get

E(XL(m+1)) =
1
m

E

(
X2

L(m+1)

X2
L(m)

)
+ E

(
X2

L(m+1)

XL(m)

)
.

Also, for the case r = 1 and s = 3 in Corollary 2.5, we have

E(X2
L(m+1)) =

1
m

E

(
X3

L(m+1)

X2
L(m)

)
+ E

(
X3

L(m+1)

XL(m)

)
.

Hence we simply obtain the variance V (XL(m+1)) of the lower record
value XL(m+1). That is,

V (XL(m+1)) =

(
1
m

E

(
X3

L(m+1)

X2
L(m)

)
+ E

(
X3

L(m+1)

XL(m)

))

−

(
1
m

E

(
X2

L(m+1)

X2
L(m)

)
+ E

(
X3

L(m+1)

XL(m)

))2

.

This completes the proof.

References

[1] M. Ahsanuallah, Record Statistics, Nova Science Publishers, Inc., NY, 1995.
[2] M. Ahsanuallah, Record Values-Theory and Applications, University Press of

America, Inc., NY, 2004.
[3] N. Balakrishnan and M. Ahsanuallah, Recurrence relations for single and product

moments of record values from generalized pareto distribution, Commun. Stat.-
Theor. Meth. 23 (1994), no. 1, 2841-2852.



106 Se-Kyung Chang

[4] N. Balakrishnan, P. S. Chan and M. Ahsanuallah, Recurrence relations for mo-
ments of record values from generalized extreme value distribution, Commun.
Stat.-Theor. Meth. 22 (1993), no. 5, 1471-1482.

[5] N. Balakrishnan, M. Ahsanuallah and P. S. Chan, Relations for single and prod-
uct moments of record values from Gumbel distribution, Stat. Probab. Lett., 15
(1992), 223-227.

[6] K. N. Chandler, The distribution and frequency of record values, J. R. Stat. Soc.
B 14 (1952), 220-228.

*
Department of Mathematics Education
Cheongju University
Cheongju, Chungbuk 360-764, Republic of Korea
E-mail : skchang@cju.ac.kr


