THE H_1 -STIELTJES INTEGRAL OF BANACH-VALUED FUNCTIONS

JU HAN YOON*, JAE MYUNG PARK**, AND DEOK HO LEE***

ABSTRACT. In this paper, we define the H_1 -Stieltjes integral of Banach-valued functions which is a generalization of real-valued H_1 -Stieltjes integral and investigate some properties of H_1 -Stieltjes integral. Also we show that if $f : [a,b] \to X$ be a function with dim $X < \infty$, then $f \in H_1LS([a,b], X, \alpha)$ if and only if $f \in H_1S([a,b], X, \alpha)$.

1. Introduction and preliminaries

In 1999, I.J.L. Garces, L.P. Yee and A.D. Sheng [2] defined the H_1 -integral by means of Moore-Smith limit of the Riemann sums using the directed set and investigated the relation of Henstock integral. They proved that a function f is Henstock integrable if and only if f = g almost everywhere on [a, b] for some H_1 integrable function g on [a, b]. J.H.Yoon and K.S. Eun [7] studied the basic properties of H_1 -integral. In this paper, we will define the H_1 -Stieltjes integral of Banach-valued functions with respect to a function of bounded variation which is an extention of real valued H_1 -Stieltjes integral with an increasing function. We will investigate some properties of the H_1 -Stieltjes integral of Banach-valued functions .

Let $\delta(x) > 0$ for $x \in [a, b]$ be given. A division $\mathcal{D} = \{([u, v], \zeta)\}$ of [a, b]is said to be δ - fine if $\zeta \in [u, v] \subset (\zeta - \delta(\zeta), \zeta + \delta(\zeta))$ for each $([u, v], \zeta)$. Denote by \mathcal{P} the family of all δ - fine divisions of [a, b]. For $\mathcal{D}_1, \mathcal{D}_2 \in \mathcal{P}$, we write $\mathcal{D}_2 \ge \mathcal{D}_1$ if for each $\{[s, t], \zeta\} \in \mathcal{D}_2$ there exists $\{[u, v], \zeta\} \in \mathcal{D}_1$ such that $[s, t] \subset [u, v]$ and $\{\zeta : ([u, v], \zeta) \in \mathcal{D}_1\} \subset \{\eta : ([s, t], \eta) \in \mathcal{D}_2\}$. Then (\mathcal{P}, \geq) is a directed set.

Received November 23, 2007.

²⁰⁰⁰ Mathematics Subject Classification: 28B05, 26A39.

Key words and phrases: H_1 - Stieltjes Integral, H_1 - Equiintegrable.

^{*}Supported by Chungbuk National University Grant in 2007.

Throughout this paper, X is a real Banach space with dual X^* and α is a function of bounded variation.

A function $f : [a, b] \to R$ is H_1 - *integrable* to a real number A on [a, b] if A is the Moore-Smith limit of the Riemann sums with respect to the directed set (\mathcal{P}, \geq) , for some positive function δ on [a, b]. More precisely, $f : [a, b] \to R$ is H_1 - integrable on A on [a, b] if there exists a positive function δ on [a, b] such that for each $\varepsilon > 0$ there exists a δ - fine division \mathcal{D}_0 such that for any δ - fine division $\mathcal{D} \geq \mathcal{D}_0$ of [a, b]. we have

$$\|(\mathcal{D})\sum f(\zeta)(v-u) - A\| < \varepsilon$$

We say that A is the H_1 - *integral* of f on [a, b] and that f is H_1 - integrable on [a, b] using δ and $f : [a, b] \to R$ is H_1 - integrable on a set $E \subset [a, b]$ if f_{χ_E} is H_1 - integrable on [a, b].

It is easy to show that every H_1 - integrable function on [a, b] is Henstock integrable, but the converse don't know([2]).

2. The H_1 - Stieltjes integral of Banach-valued functions

We define the H_1 -Stieltjes integral of Banach-valued functions with respect to a function of bounded variation which is an extention of realvalued H_1 - Stieltjes integral with respect to an increasing function.

DEFINITION 2.1. Let α be a function of bounded variation on [a, b]. A function $f : [a, b] \to X$ is H_1 -Stieltjes integrable to $A \in X$ with respect to α on [a, b] if there exists a positive function δ on [a, b] such that for each $\varepsilon > 0$ there exists a δ -fine division \mathcal{D}_0 such that for any δ - fine division $\mathcal{D} \geq \mathcal{D}_0$ of [a, b]. we have

$$\|(\mathcal{D})\sum f(\zeta)(\alpha(v)-\alpha(u))-A\|<\varepsilon.$$

We say that A is H_1 -Stieltjes integral of f on [a, b] and that f is H_1 -Stieltjes integrable on [a, b] using δ , we write $A = \int_a^b f d\alpha$ and $f : [a, b] \to X$ is H_1 -Stieltjes integrable on a set $E \subset [a, b]$ if f_{χ_E} is H_1 -Stieltjes integrable on [a, b] where χ_E denotes the characteristic function of E. We will also write $f \in H_1S([a, b], X, \alpha)$ to mean that f is X-valued H_1 -Stieltjes integrable function on [a, b] with respect to α .

If X = R, the Banach-valued H_1 - Stieltjes integral is the real-valued H_1 - Stieltjes integral.

Just as in the Henstock integral, Cauchy criterion holds for the H_1 -Stieltjes integral of Banach-valued functions.

50

THEOREM 2.2. A function $f : [a, b] \to X$ is H_1 -Stieltjes integrable with respect to α on [a, b] if and only if there exists a positive function δ such that for each $\varepsilon > 0$ there exists a δ -fine division \mathcal{D}_0 such that

$$\|(\mathcal{D}_1)\sum f(\zeta)(\alpha(v)-\alpha(u))-(\mathcal{D}_2)\sum f(\zeta)(\alpha(v)-\alpha(u))\|<\varepsilon,$$

for any δ - fine divisions $\mathcal{D}_1, \mathcal{D}_2 \geq \mathcal{D}_0$ of [a, b]

Proof. Suppose that f is H_1 - Stieltjes integrable with respect to α on [a, b]. There exists a positive function δ such that for any $\varepsilon > 0$ there exists a δ -fine division \mathcal{D}_0 such that for any δ - fine division $\mathcal{D} \ge \mathcal{D}_0$ of such that

$$\|(\mathcal{D})\sum f(\zeta)(\alpha(v) - \alpha(u)) - \int_a^b f d\alpha\| < \frac{\varepsilon}{2}$$

For any δ - fine divisions $\mathcal{D}_1, \mathcal{D}_2 \geq \mathcal{D}_0$ of [a, b],

$$\begin{aligned} \|(\mathcal{D}_1) \sum f(\zeta)(\alpha(v) - \alpha(u)) - (\mathcal{D}_2) \sum f(\zeta)(\alpha(v) - \alpha(u)) \\ &\leq \|(\mathcal{D}_1) \sum f(\zeta)(\alpha(v) - \alpha(u)) - \int_a^b f d\alpha \| \\ &+ \|(\mathcal{D}_2) \sum f(\zeta)(\alpha(v) - \alpha(u)) - \int_a^b f d\alpha)\| < \varepsilon. \end{aligned}$$

Hence the Cauchy criterion is satisfied. Conversely, suppose that the Cauchy criterion is satisfied, there exists a positive function δ such that for each positive integer n there exists a δ -fine division \mathcal{D}_n such that for any δ -fine division $\mathcal{D}_1, \mathcal{D}_2 \geq \mathcal{D}_n$ of [a, b], we have

$$\|(\mathcal{D}_1)\sum f(\zeta)(\alpha(v)-\alpha(u))-(\mathcal{D}_2)\sum f(\zeta)(\alpha(v)-\alpha(u))\|<\frac{1}{n}.$$

We may assume that the sequence $\{\mathcal{D}_n\}$ is nondecreasing since (\mathcal{P}, \geq) is a direct set. For any $\varepsilon > 0$, choose n_0 so that $\frac{1}{n_0} < \varepsilon$. For $m > n \geq n_0$, we have $\mathcal{D}_m \geq \mathcal{D}_n \geq \mathcal{D}_{n_0}$ and

$$\|(\mathcal{D}_m)\sum f(\zeta)(\alpha(v)-\alpha(u))-(\mathcal{D}_n)\sum f(\zeta)(\alpha(v)-\alpha(u))\|<\frac{1}{n_0}<\varepsilon.$$

Hence $\{(\mathcal{D}_n) \sum f(\zeta)(\alpha(v) - \alpha(u))\}$ is a Cauchy sequence. Since X is a Banach apace, there exists a limit of $\{(\mathcal{D}_n) \sum f(\zeta)(\alpha(v) - \alpha(u))\}$. Let L be the limit of this sequence. Choose a positive integer N such that $\frac{1}{N}<\frac{\varepsilon}{2}$ and

$$\|(\mathcal{D}_n)\sum f(\zeta)(\alpha(v)-\alpha(u))-L\|<\frac{\varepsilon}{2},$$

for all $n \geq N$. Let \mathcal{D}_n be a δ -fine division with $\mathcal{D}_n \geq \mathcal{D}_N$, we have

$$\|(\mathcal{D}_n)\sum f(\zeta)(\alpha(v)-\alpha(u))-L\|$$

$$\leq \|(\mathcal{D}_n) \sum f(\zeta)(\alpha(v) - \alpha(u)) - (\mathcal{D}_m) \sum f(\zeta)(\alpha(v) - \alpha(u))\|$$
$$\|(\mathcal{D}_m) \sum f(\zeta)(\alpha(v) - \alpha(u)) - L\| < \varepsilon.$$

Hence the function f is H_1 -Stieltjes integrable with respect to α on [a, b].

The following theorem is some basic properties of the H_1 - Stieltjes integral. Their proofs follows naturally the real-valued case([5])

THEOREM 2.3. Let f and g be H_1 -Stieltjes integrable with respect to α on [a, b]. Then

(a) kf is H_1 - Stieltjes integrable with respect to α on [a, b] and

$$\int_{a}^{b} kfd\alpha = k \int_{a}^{b} fd\alpha$$

(b) f + g is H_1 - Stieltjes integrable with respect to α on [a, b] and

$$\int_{a}^{b} (f+g)d\alpha = \int_{a}^{b} fd\alpha + \int_{a}^{b} fd\alpha.$$

DEFINITION 2.4. A set $K \subset H_1S([a, b]), X, \alpha)$ is called H_1 -Stieltjes equiintegrable with respect to α if there exists a positive function δ on [a, b] such that for each $\epsilon > 0$ there exist a δ - fine division D_0 such that for any δ -fine division $D \ge D_0$ of [a, b]

$$\|(\mathcal{D})\sum f(\zeta)(\alpha(v) - \alpha(u)) - \int_a^b f(x)d\alpha\| < \varepsilon,$$

for each $f \in K$.

Using the concept of H_1 - Stieltjes Equiintegrability we have the following convergence theorem for the H_1 -Stieltjes integral. Its proof is similar to those for the McShane integral([3]) THEOREM 2.5. If the sequence $\{f_n\}$ of Banach-valued function f_n : $[a,b] \to X$ is H_1 -Stieltjes Equiintegrable with respect to α on [a,b] and $\lim_{n\to\infty} f_n = f$, then $f \in H_1S([a,b]), X, \alpha)$ and $\lim_{n\to\infty} \int_a^b f_n d\alpha = \int_a^b f d\alpha$.

THEOREM 2.6. Let $f : [a, b] \to X$ is H_1 -Stieltjes integrable with respect to α on [a, b]. Then

(a) for each $x^* \in X^*, x^*f$ is H_1 -Stieltjes integrable with respect to α on [a,b] and

$$\int_{a}^{b} x^* f d\alpha = x^* \int_{a}^{b} f d\alpha.$$

(b) $\{x^*f : x^* \in B(X^*)\}$ is H_1 - Stieltjes equiintegrable with respect to α on [a, b]

(c) f is weakly measurable.

Proof. (a) Since $f : [a, b] \to X$ is H_1 - Stieltjes integrable with respect to α on [a, b] such that for each $\varepsilon > 0$ there exist a positive function δ on [a, b] such that there exists a δ - fine division \mathcal{D}_0 such that

$$\|(\mathcal{D})\sum f(\zeta)(\alpha(v)-\alpha(u))-\int_a^b fd\alpha\|<\varepsilon,$$

for any δ -fine division $\mathcal{D} \geq \mathcal{D}_0$. Hence for any $x^* \in X^*$ we have

$$\begin{aligned} \|(\mathcal{D})\sum x^*f(\zeta)(\alpha(v)-\alpha(u))-x^*\int_a^b fd\alpha\|\\ \leq \|x^*\|\|(\mathcal{D})\sum f(\zeta)(\alpha(v)-\alpha(u))-\int_a^b fd\alpha\|<\|x^*\|\varepsilon,\end{aligned}$$

for any δ -fine division $\mathcal{D} \geq \mathcal{D}_0$. Therefore (a) holds. (b) If $x^* \in B(X^*)$, then the above inequality give

$$\|(\mathcal{D})\sum x^*f(\zeta)(\alpha(v)-\alpha(u))-x^*\int_a^b fd\alpha\|<\varepsilon,$$

for any $x^* \in B(X^*)$, so the set $\{x^*f : x^* \in B(X^*)\}$ is H_1 -Stieltjes equiintegrable with respect to α on [a, b].

(c) f is weakly measurable since for each $x^* \in X, x^*f$ is H_1 -Stieltjes integrable with respect to α on [a, b]

Ju Han yoon, Jae Myung Park, and Deok Ho Lee

3. The H_1L - Stieltjes integral of Banach-valued functions

The Saks-Henstock Lemma holds for the real-valued Henstock integral, but is not satisfied for Banach-valued functions. So we define an integral which satisfies Saks-Henstock Lemma with $|\cdot|$ replaced $||\cdot||$.

DEFINITION 3.1. Let α be a function of bounded variation on [a, b]. A function $f : [a, b] \to X$ is H_1L - Stieltjes integrable with respect to α on [a, b] if there a function $F : [a, b] \to X$ defined on the subintervals of [a, b] with the following property: there exists a positive function δ such that for each $\varepsilon > 0$ there exists a δ -fine division $D \ge D_0$ of [a, b], we have

$$\|(\mathcal{D})\sum f(\zeta)(\alpha(v) - \alpha(u)) - F^{\alpha}([u, v]])\| < \varepsilon,$$

where $F^{\alpha}([u, v]]) = F(\alpha(v)) - F(\alpha(u))$. In this case, we will write $f \in H_1LS([a, b], X, \alpha)$.

By definition, an H_1L -Stieltjes integrable function with primitive F^{α} satisfies Saks-Henstock Lemma with $|\cdot|$ replaced $||\cdot||$. We note that by the triangle inequality, $f \in H_1LS([a,b], X, \alpha)$ implies $f \in H_1S([a,b], X, \alpha)$. In general, the converse is not true. For real-valued functions, the two integrals are equivalent.

The next theorem says that if dim $X < \infty$, then the two integrals are equivalent.

THEOREM 3.2. Let $f : [a,b] \to X$ be a function with dim $X < \infty$. Then $f \in H_1LS([a,b], X, \alpha)$ if and only if $f \in H_1S([a,b], X, \alpha)$.

Proof. It suffices to prove that $f \in H_1S([a,b], X, \alpha)$ implies $f \in H_1LS([a,b], X, \alpha)$. If $f \in H_1S([a,b], X, \alpha)$, i.e. there exist real-valued functions $f_i(1 \le i \le n)$ which are H_1 - Stieltjes integrable with respect to α and $f(t) = (f_1(t), \dots, f_n(t))$ for each $t \in [a, b]$.

Since all norms in \mathbb{R}^n are equivalent, we just one of them, say $||X|| = \sum_{i=1}^n |x_i|$ where $X = (x_1, \dots, x_n) \in \mathbb{R}^n$. Now, $f \in H_1S([a, b], \mathbb{R}^n, \alpha)$ imples that for each $\varepsilon > 0$ there exists a δ - fine division \mathcal{D}_0 such that for any δ - fine division $D \ge D_0$ of [a, b], we have

$$\|(\mathcal{D})\sum f(\zeta)(\alpha(v)-\alpha(u))-F^{\alpha}([u,v]])\|<\varepsilon.$$

This implies that $|(\mathcal{D}) \sum f_i(\zeta)(\alpha(v) - \alpha(u)) - F_i^{\alpha}([u, v]]) | < \varepsilon$ for $i = 1, \dots, n$, where $F_i(1 \le i \le n)$ are the primitive of f_i . By the Saks -Henstock Lemma for real-valued function, we have

54

$$(\mathcal{D})\sum_{i} |f_i(\zeta)(\alpha(v) - \alpha(u)) - F_i^{\alpha}([u, v]])| < 2\varepsilon,$$
for $i = 1, \cdots, n$. This implies

$$(\mathcal{D}) \sum \|f(\zeta)(\alpha(v) - \alpha(u)) - F^{\alpha}([u, v]])\|$$

= $(\mathcal{D}) \sum \sum_{i=1}^{n} |f_i(\zeta)(\alpha(v) - \alpha(u)) - F^{\alpha}_i([u, v])|$
= $\sum_{i=1}^{n} (\mathcal{D}) \sum |f_i(\zeta)(\alpha(v) - \alpha(u)) - F^{\alpha}_i([u, v])| < 2n\varepsilon.$

Hence $f : [a, b] \to X$ is H_1L - Stieltjes integrable with respect to α on [a, b].

References

- S. S. Cao, The Henstock Integral for Banach-valued functions, SEA Bull. Math. 16 (1992), no. 1, 35-40.
- [2] I. J. L. Garces, L.P. Yee and Z. Dongsheng, Moore-Smith limits and the Henstock integral, Real Analysis Exchange, 24 (1999), no. 1, 447-456.
- [3] R. A. Gordon, The McShane integral of Banach-valued function, Illinois J. Math. 34 (1990), 557-567.
- [4] P. Y. Lee, Lanzhou Lectures in Henstock Integration, World Scientific, 1989.
- [5] J. S. Lim, J. H. Yoon and G. S. Eun, On Henstock-Stieltjes Integral, Kangweon-Kyungki Math. J. 6 (1998), no. 1, 87-96.
- [6] J. H. Yoon, G. S. Eun and Y.C.Lee, On McShane-Stieltjes Integral, Kangweon-Kyungki Math. J. 5 (1997), no. 2 217-225.
- [7] J. H. Yoon and G. S. Eun, A study of the property of H₁-integral, Bull. of Sci. Edu. CBNU 18 (2002), no. 2, 101-105.

Ju Han yoon, Jae Myung Park, and Deok Ho Lee

*

Department of Mathematics Education Chungbuk University CheongJu 361-764, Republic of korea *E-mail*: yoonjh@cbnu.ac.kr

**

Department of Mathematics Chungnam National University Daejon 305-764, Republic of Korea *E-mail*: parkjm@cnu.ac.kr

Department of Mathematics Education Kongju University Kongju 314-701, Republic of korea *E-mail*: dhlee2@kongju.ac.kr

56