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HOMOGENEOUS REAL HYPERSURFACES IN
A COMPLEX HYPERBOLIC SPACE WITH

FOUR CONSTANT PRINCIPAL CURVATURES

Hyunjung Song*

Abstract. We deal with the classification problem of real hypersurfaces in
a complex hyperbolic space. In order to classify real hypersurfaces in a com-
plex hyperbolic space we characterize a real hypersurface M in Hn(C) whose
structure vector field is not principal. We also construct extrinsically homo-
geneous real hypersurfaces with four distinct curvatures and their structure
vector fields are not principal.

1. Introduction

Since E. Cartan’s work in the late 30’s classification problem of hyper-

surfaces with constant principal curvatures is known to be far from trivial.

Among the many great deals some differential geometers have studied the

classification problem of real hypersurfaces in a complex hyperbolic space,

however, a complete classification has not been obtained until now. This

paper deals with the classification problem in a complex hyperbolic space.

Let Hn(C) be a complex hyperbolic space of complex dimension n(= 2)

endowed with the metric of constant holomorphic sectional curvature −4,

and M be a real hypersurface in Hn(C).

S. Montiel ([7]) gave the following classification theorem.

Theorem A. Let M be a connected real hypersurface of Hn(C) n(=
3) with two distinct constant principal curvatures, then M is holomorphic

congruent to one of the model spaces of A0 and A1.

Moreover, J. Berndt[2] proved the following theorem.
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Theorem B. Let M be a connected real hypersurface of Hn(C) with

constant principal curvatures. If M has a principal structure vector field,

then M is holomorphic congruent to an open part of well-known homoge-

neous model spaces A0, A1, A2, and B type.

The homogeneous model spaces of A0 are horospheres, and have two

distinct principal curvatures 2 and 1 with multiplicities 1 and 2n − 2 re-

spectively. Those of type A1 are geodesic spheres (resp. tubes over totally

geodesic complex hyperbolic hyperplanes), and have two distinct princi-

pal curvatures 2coth 2t and tanh t (resp. coth t) with multiplicities 1 and

2n − 2 respectively. The A2 types are tubes over totally geodesic Hk(C)

(1 ≤ k ≤ n−2), and have three distinct principal curvatures 2coth 2t, tanh t

and coth t with multiplicities 1, 2p and 2q respectively, where p > 0, q > 0

and p + q = n− 1. The B types are tubes over totally real hyperbolic space

Hn(R), and have three distinct principal curvatures 2tanh 2t of multiplic-

ity 1, coth t of multiplicity n − 1 and tanh t of multiplicity n − 1, unless

coth t =
√

3. When coth t =
√

3, they have two distinct principal curvatures

with multiplicities n and n− 1.

An orbit in Hn(C) is said to be extrinsically homogeneous if it is an orbit

under a closed subgroup L of the identity component G of the group of all

isometries of Hn(C). For such orbits, the orbit with the maximal dimension

is called principal. Moreover, if such an principal orbit is a real hypersurface

in Hn(C) with r distinct constant principal curvatures, then this orbit is said

to be of r-type.

As proposed also in R. Niebergall and P. J. Ryan([5]), the following is

an open problem : Classify all extrinsically homogeneous real hypersurfaces

in Hn(C). From theorem A it is well known that every extrinsically homo-

geneous real hypersurface M in Hn(C) of 2-type is congruent to one of the

model spaces of A0 and A1. Recently when an extrinsically real hypersur-

face M is of 3-type in a Hn(C) and its structure vector field is not principal,

some differential geometers have studied this problem. For this problem J.

Saito ([6]) proved that every extrinsically homogeneous real hypersurface of
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3-type in Hn(C) has a principal structure vector field. However there is a

mistake in deduction to lead a certain formula. In fact J. Berndt ([1]) and

I.-B. Kim, H.S. Kim and R.Takagi([4]) showed that there are real hypersur-

faces with three distinct constant principal curvatures on which structure

vector fields are not principal in Hn(C) . In addition, for these real hyper-

surfaces I.-B. Kim, H.S. Kim and R.Takagi([4]) classified all homogeneous

real hypersurfaces in the case where: the multiplicities of the principal cur-

vatures with respect to nonzero components of structure vector field are 1

and 1.

Recently, in [1], J. Berndt constructed subgroups Bn and Ln of the con-

nected component of the group of isometries of Hn(C) for each n such that:

(1) a certain orbit Bn(o) under Bn has three distinct principal curvatures

1,-1 and 0 with multiplicities 1, 1, 2n− 3 respectively and the structure vec-

tor field on Bn(o) is not principal. These the number of distinct principal

curvatures does not depend on all points. Such orbit Bn(0) is said to be a

Be type of first kind.

(2) a certain orbit Ln(o) under Bn has three distinct principal curvatures

or four distinct principal curvatures, i.e., the number of distinct principal

curvatures depend on a point. Such orbit Ln(o) is said to be a Be type of

second kind.

Through this paper we assume that:

(C) Every real hypersurface M has three distinct constant principal cur-

vatures and its structure vector field is not principal.

In this paper, we shall deal with an extrinsically homogeneous real hy-

persurface M such that the structure vector field on M is not principal and

M has four distinct principal curvatures in Hn(C). First, we investigate

some properties of multiplicities of the principal curvatures with respect to

nonzero components of structure vector field. Next, we show that there is a

real hypersurface M in Hn(C) for the case where: the multiplicities of the

principal curvatures with respect to nonzero components of structure vector

field are 1 and k(≥ 2). Last, we construct extrinsically homogeneous real
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hypersurfaces with four distinct curvatures and their structure vector fields

are not principal.

2. Preliminaries

Let Hn(C) be a complex hyperbolic space of complex dimension n(= 3)

with the metric of constant holomorphic sectional curvature −4, and M

be a real hypersurface in Hn(C) with the induced metric. Choose a local

field {e1, · · · , e2n} of orthonormal frame in a way that, restricted to M , the

vectors e1, · · · , e2n−1 are tangent to M . Hereafter let the indices i, j, k, l run

through from 1 to 2n− 1 unless otherwise stated. We denote by θi, θi
j and

Θi
j the canonical 1-forms, the connection forms and curvature form of M

respectively. Then they satisfy

(2.1)

d θi +
∑

j

θi
j ∧ θj = 0, θi

j + θj
i = 0,

d θi
j +

∑

k

θi
k ∧ θk

j = Θi
j

We denote by J̃ the natural complex structure of Hn(C) and (J i
j , ξi)

be the almost contact structure of M , i.e., J̃(ei) =
∑

j Jj
i ej + ξie2n. Then

(J i
j , ξi) satisfies

(2.2)
∑

k

J i
kJk

j = −δi
j + ξiξj ,

∑

j

Jj
i ξj = 0,

∑

i

ξiξi = 1,

where ξ =
∑

ξiei is said to be the structure vector field of M and ξi is called

the components of ξ. Let φi be 1-forms of M such that
∑

i φiθ
i is the second

fundamental form of M for e2n. Then the parallelism of J̃ of Hn(C) implies

(2.3) d J i
j =

∑

k

(J i
kθk

j − Jj
kθk

i )− ξiφj + ξjφi,

(2.4) d ξi =
∑

k

(ξkθk
i − Jk

i φk).

The equation of Gauss is given by

(2.5) Θi
j = φi ∧ φj − θi ∧ θj −

∑

k,l

(J i
kJj

l + J i
jJ

k
l )θk ∧ θl.
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The equation of Codazzi is given by

(2.6) dφi = −
∑

j

φj ∧ θj
i −

∑

j,k

(ξjJ
i
k + ξiJ

j
k)θj ∧ θk.

We assume that all principal curvatures λ1, · · · , λ2n−1(not necessarily

distinct) of M for e2n are constant. We may set φi = λiθ
i. For an index

i, we denote by [i] the set of indices j with λi = λj . Then it is obvious

that the vector Vi =
∑

j∈[i] ξjej is independent of the choice of orthonormal

frame {ej | j ∈ [i]} for the eigenspace belonging to ξi. Therefore for any

index i we can indicate a special index i′ so that the vector Vi linearly

depends on ei′ . In other words, we can choose an orthonormal frame for

the eigenspace belonging to λi so that ξj = 0 for j ∈ [i]\{i′}. In the same

way, for Jj
k(j is any index and fixed and k is the index that λk 6= λi′), we

can indicate a special index k′ and choose an orthonormal frame for the

eigenspace belonging λk′ so that Jj
l = 0 for l ∈ [k]\{k′}.

Then by (2.1) and (2.6) we can write the connection forms θi
j in the form

(2.7) (λi − λj)θi
j = −

∑

k

(Aijk + ξiJ
j
k + ξjJ

i
k)θk,

where Aijk = Ajik = Aikj . From (2.7), it is easily seen that

(2.8) Aijk = −ξiJ
j
k − ξjJ

i
k if λi = λj ,

(2.9) ξiJ
j
k = 0 if λi = λj = λk.

We quote an important formula,

(2.10)

2
λk 6=λi∑

k

(Aijk + ξkJ i
j + ξiJ

k
j )2

λk − λi

−2
λk 6=λj∑

k

(Aijk + ξkJj
i + ξjJ

k
i )2

λk − λj

+6(λi − λj)J i
j

2 − 3(ξ2
j λi − ξ2

i λj)− (λi − λj)(c + λiλj)

= 0.
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Hereafter we assume that M has three distinct constant principal curva-

tures x, y, and z. Let m(x),m(y) and m(z) be the multiplicities of x, y and

z respectively. We shall make use of the following convention on the range

of indices:

1 ≤ a, b, c ≤ m(x), m(x) + 1 ≤ r, s, t ≤ m(x) + m(y)

m(x) + m(y) + 1 ≤ u, v, w ≤ 2n− 1.

From now on m(x),m(y), and m(z) are called the multiplicities with respect

to components ξa , ξr and ξu, respectively.

3. Properties of the structure vector field on M

From now on we assume that the structure vector field ξ is not principal

and we investigate its properties.

Now we note the following fact.

Lemma ([6]). If M has three distinct constant principal curvatures and

its structure vector field is not principal, then there exists an orthonormal

frame {e1, e2, · · · , e2n−1} on M such that ξu = 0 and ξaξr 6= 0.

There are three cases for multiplicities as follows .

(1) m(x) = m(y) = 1,

(2) m(x),m(y) ≥ 2.

(3) m(x) = 1,m(y) ≥ 2.

Case (1): In this case, we have m(z) ≥ 3. Moreover J12 = 0. Hence

Juv 6= 0 since rankJ = 2n − 2. Now we can choose an orthonormal frame

{eu} so that

J13 = −ξ2, J23 = ξ1 and J1u = J2u = J3u = 0(u 6= 3).

Let us take the exterior derivative of ξu = 0. Then we have

(03.1)
ξ2
1

x− z
+

ξ2
2

y − z
= z

(03.2)
3ξ2

1

x− z
+

A123 + ξ2
2

y − z
= x
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(03.3)
A123 − ξ2

1

x− z
− 3ξ2

2

y − z
= −y.

(03.4) A12u = 0 ifa 6= 3.

It follows from (03.1) and the relation ξ2
1 +ξ2

2 = 1 that ξ2
1 is constant. Taking

account of the coefficient of θ3 in dξ1 = 0, from (03.2) and (03.3) we have

(03.5) 3z2 − 2z(x + y) + xy + 1 = 0.

We put i = 1 and j = u in (2.10), then from (03.1) and (03.4) we have

(03.6)
2ξ2

2

y − z
− 3zξ2

2 + (y − z)(yz − 1) = 0.

Similarly, putting i = 2 and j = u in (2.10), then we get

(03.7)
2ξ2

1

y − z
− 3zξ2

1 + (x− z)(xz − 1) = 0.

Cancelling ξ2
1 and ξ2

2 from (03.6) and (03.7) we have

z − (x + y) + yz(y − z) + xz(x− z) = 0.

From the above equation and (03.5) we have

(03.8) 3z = x + y and xy = 3z2 − 1.

Using (03,8) I.-B. Kim, H.S. Kim and R.Takagi([4]) classified all extrinsically

homogeneous real hypersurfaces, more precisely,

Theorem C ([4]). If M is an extrinsically homogeneous real hypersur-

face in Hn(C) with case (1), then M is congruent to Be type of first kind.

Case (2): In this case, we shall prove that this case does not occur. Now

we have from (2.9) Jab = Jrs = 0. Here we indicate a special index 1(resp.

r′) and choose an orthonormal frame {ea} (resp, {er}) so that ξa = 0 if

a 6= 1 (resp. ξr = 0 if r 6= r′), Then we from (2.2)

(3.1) J1
r = 0 = Ja

r′
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For indices u, we choose an orthonormal frame {eu} so that J1
u′ = ξr′ , J1

u = 0

if u 6= u
′
. Then, from (2.2) and (3.1)

(3.2) Ju′
r′ = ξ1, Ja

u′ = Jr
u′ = Jr′

u = 0 if u 6= u
′
and a 6= 1

Taking the exterior derivative of J1
r = 0 and ξa = 0 (a 6= 1), we have

∑

k

ξr′Au′rkθk

y − z
−

∑
a

Jr
aθa

1 −
∑

v 6=u′

∑

k

Jr
v (A1vk + ξ1J

v
k )θk

x− z
− yξ1θ

r = 0,

∑

k

ξr′(Aar′k + ξr′J
a
k )θk

x− y
+ ξ1θ

1
a + y

∑
r

Ja
r θr + z

∑
v

Ja
v θv = 0.

Taking account of the coefficient of θb in the equations and using (2.2), (3.1)

and (3.2) we have

(3.3) Aaru′ = 0. (a 6= 1or r 6= r′)

Now we put i = u′, j = a (a 6= 1) in (2.10). Then using (2.8), (3.1), (3.2)

and (3.3) we have

(3.4) yz − 1 = 0.

Moreover put i = u′, j = r (r 6= r′). Then using (2.8), (3.1), (3.2) and (3.3)

we have

(3.5) xz − 1 = 0.

From (3.4) and (3.5) we have z = 0 which contradicts −1 6= 0. Thus we

have the following Theorem 1.

Theorem 1. There is no real hypersurface in Hn(C) with three distinct

principal curvatures such that multiplicities of the principal curvatures with

respect to nonzero components of structure vector field are greater than 2.

Case (3): In this case we can choose {er} so that ξr = 0 if r 6= 2. Then

we have

(3.6) J1
r = 0.
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From (2.3) and (3.6) it follows that

m(y) +
∑

Ju
v

2 = m(z).

This implies that m(z) ≥ m(y). For simplicity we put m(y) = k. Now we

choose an orthonormal frame {eu} so that

J2
u′ = −ξ1, J

2
v = 0 if v 6= u′,

where u′ = k + 2. Then from (2.2) and (3.6)

(3.7) J1
u′ = −ξ2, Ju′

v = 0, J1
v = 0, Jr

u′ = 0. (r 6= 2, v 6= u′)

Taking the exterior derivative of ξu′ = 0, we have

(3.8) 3(
y − z

x− z
)ξ2

1 + 3(
x− z

y − z
)ξ2

2 = x(y − z) + y(x− z)− 1.

(3.9) A1ru′ = 0 if r 6= 2.

Hence it follows from (3.8) and the equation ξ2
1 + ξ2

2 = 1 that

(3.10) −3
(x− y)(x + y − 2z)

(x− z)(y − z)
ξ2
1 = x(y − z) + y(x− z)− 1− 3(

x− z

y − z
).

If x + y − 2z 6= 0, then ξ1 is constant. Taking account of the coefficient of

θk+2 in dξ1 = 0, we have

3(
x− y

x− z
)ξ2

1 = z(x− y)− x(y − z) + 2

3(
x− y

y − z
)ξ2

2 = z(x− y) + y(x− z)− 2.

From the equations above, we have

(3.11) z(x + y − 2z)− (x− z)(y − z)− 1 = 0.

If x + y − 2z = 0 in the equation (3.10), then using x − z = z − y and

y = 2z − x we have

(y − z)(x− z) + 1 = 0.
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This implies that the equation (3.11) holds if x + y− 2z = 0. Put i = r(r 6=
2), j = k + 2 in (2.10), the using (2.8), (3.7) and (3.9) we have

(3.12) yz − 1 = 0.

Taking the account of the coefficient of θr in dJ2
r = 0 and using (2.2), (2.8)

and (3.7), we have y2 − yz = 2. From this equation, (3.11) and (3.12) we

get

(3.13) y2 = 3, y = 3z, and x = 0.

From this equation we have y = ±√3 and z = ± 1√
3
. There is no loss of

generality such that we may assume that

y =
√

3 and z =
1√
3
.

Let Eij denote a square matrix with entry 1 where the ith row and the jth

column meet. From the above results and (2.2) we can write

(3.14)

ξ =
1
3
e1 +

2
√

2
3

e2,

J =− 2
√

2
3

(E1,k+2 − Ek+2,1) +
1
3
(E2,k+2 − Ek+2,2)

−
k−1∑
α=1

(E2+α,k+2+α − Ek+2+α,2+α)

−
n−k−1∑

p=1

(E2k+1+2p−1,2k+1+2p − E2k+1+2p,2k+1+2p−1).

From (2.1), (2.7) and (3.14) we have

(3.15)

θ1
2 = − 1√

3
θu′ , θ1

2+α = − 1√
3
θα+u′ , θ1

u′ =
1√
3
(2
√

2θ1 − θ2),

θ1
α+u′ = − 1√

3
θ2+α, θ1

2k+2p = −zθ2k+2p+1,

θ1
2k+2p+1 = zθ2k+2p

θ2
2+α =

√
2
3
θα+u′ , θ2

u′ =
1√
3
(−θ1 +

√
2θ2),
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θ2
α+u′ = −2

√
2
3
θ2+α, θ2

2k+2p =

√
2
3
θ2k+2p+1,

θ2
2k+2p+1 = −

√
2
3
θ2k+2p

θ2+α
2+β = θu′+α

u′+β , θ2+α
u′+β = δαβ

1√
3
(θ1 −

√
2θ2)

θ2+α
2k+2p = θ2+α

2k+2p+1 = θ2+α
u′ = 0, θu′

u′+α = −
√

2
3
θu′+α

θu′
2k+2p = −

√
2
3
θ2k+2p, θu′

2k+2p+1 = −
√

2
3
θ2k+2p+1,

θu′+α
2k+2p = θu′+α

2k+2p+1 = 0,

where 1 ≤ α, β ≤ k − 1 and 1 ≤ p ≤ n− k − 1.

For later use we choose a new orthonormal frame field ê = {ê1, . . . , ê2n−1}
in such a way that

(3.16)

ê1 = ξ =
1
3
e1 +

2
√

2
3

e2, ê2 = −2
√

2
3

e1 +
1
3
e2,

ê2+α = −e2+α, êk+1+s = e2n−s, (1 ≤ s ≤ m(z)− k),

êk+1+m(z)−k+α = e2k+2−α (1 ≤ α ≤ k − 1) ê2n−1 = eu′ .

Then the transition matrix F from the frame ê to the frame e is

(3.17) F =
1
3
(E11 + E22) +

2
√

2
3

(E21 −E12)−
∑

r 6=2

Err +
m(z)∑

i=1

Ek+1+i,2n−i.

Let Ĵ and Â denote the almost contact structure and the shape operator of

M with respect to the frame ê, respectively. Then from (3.14) and (3.17)

we have

(3.18)

Ĵ êi = ê2n+1−i, (1 ≤ i ≤ n)

Â =
8

3
√

3
E11 +

1
3
√

3
E22 +

2
√

2
3
√

3
(E12 + E21)

+
√

3
∑

r 6=2

Err +
1√
3

∑
u

Euu.

For the corresponding dual 1-form θ̂i and connection form θ̂i
j to the fame ê,
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it follows from (3.15) and (3.16)

(3.19)

θ̂1
2 = − 1√

3
θ̂2n−1, θ̂1

2+α = − 1√
3
θ̂2n−1−α,

θ̂1
k+1+2p =

1√
3
θ̂k+2p, θ̂1

k+2p = − 1√
3
θ̂k+2p+1,

θ̂2
2+α = −

√
2
3
θ2n−1−α, θ̂2

k+2p+1 =

√
2
3
θ̂k+2p,

θ̂2
k+2p = −

√
2
3
θ̂k+2p+1,

θ̂1
2n−1−k−α =

√
3θ̂u′−α, θ̂2

2n−1−k−α = 0

θ̂1
2n−1 =

1
3
√

3
(2
√

2θ̂1 + θ̂2) θ̂2
2n−1 =

1
3
√

3
θ̂1 +

7
√

2
3
√

3
θ̂2

θ̂2+α
2+β = θ2+α

2+β , θ̂2+α
k+1+2p = θ̂2+α

k+2p = θ̂2+α
2n−1 = 0,

θ̂2+α
2n−1−k−α = δα,k−β

1√
3
(θ̂1 −

√
2θ̂2)

θ̂k+1+α
k+1+β = θ̂k+1+2p

2n−1−k−β = θ̂k+2p
2n−1−k−β = 0,

θ̂k+1+2p
2n−1 =

√
2
3
θ̂k+1+2p θ̂k++2p

2n−1 =

√
2
3
θ̂k+2p

θ̂2n−1−k−α
2n−1−k−β = θ2k+2−α

2k+2−β = θu′−α
u′−β , θ̂2n−1−k−α

2n−1 = −
√

2
3
θ2n−1−k−α

and

(3.20)

θ̂1
2 = − 1√

3
θ̂2n−1, θ̂1

2+α = − 1√
3
θ̂2n−1−α, θ̂1

n+α =
√

3θ̂n+1−α,

θ̂2
2+α = −

√
2
3
θ̂2n−1−α, θ̂2

n+α = 0, θ̂2+α
2+β = θ2+α

2+β ,

θ̂2+α
n+β =

1√
3
δα,k−β(θ̂1 +

√
2θ̂2), θ̂n+α

n+β = θ̂n+1−α
n+1−β ,

θ̂1
2n−1 =

1
3
√

3
(2
√

2θ̂1 + θ̂2) θ̂2
2n−1 =

1
3
√

3
θ̂1 +

7
√

2
3
√

3
θ̂2

θ̂2+α
2n−1 = 0, θ̂n+α

2n−1 =

√
2
3
θ̂n+α, for 1 ≤ α, β ≤ k − 1

for m(z) > m(y) and m(z) = m(y), respectively.
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4. Reconstructions of extrinsically homogeneous real hypersur-

faces

In this section we shall construct extrinsically homogeneous real hyper-

surfaces with four distinct principal curvatures and their structure vector

fields are not principal. In the following we construct this for m(y) = m(z)

and abbreviate the construction for m(z) > m(y) since we have only to

apply the same method.

Basically we shall adopt the notations in S. Helgason([3]).

Let GL(n + 1,C) be the general linear group of degree n + 1 over C. For

I = E11 − E22 − · · · − En+1,n+1, we put

G = {σ ∈ GL(n + 1,C) |σtIσ̄ = I, det σ = 1}
and

K = {
(

σ 0
0 τ

)
|σ ∈ U(1), det σ det τ = 1}.

Then K is a closed subgroup of G, and the homogeneous space G/K is

just the hyperbolic complex space form of complex dimension n, which is

denoted by Hn. The Riemannian metric and the complex structure on Hn

will be stated later.

In the following, given a Lie group (e.g. G), we denote the associated Lie

algebra of G by the corresponding German character g. Conversely, given a

subalgebra (e.g. l) of g, we denote by the corresponding Roman character

L the connected Lie subgroup of G whose Lie algebra is l.

We put

(4.1)

Aα = iE11 − iEα+1,α+1, Ỹjk = iEjk + iEkj ,

Yjk = Ejk − Ekj , Xα = iE1,α+1 − iEα+1,1,

Xn+α = E1,n+2−α + En+2−α,1,

where 1 ≤ α ≤ n and 2 ≤ j < k ≤ n + 1. Then the set {Aα, Ỹjk, Yjk, Xα,

Xn+α}1≤α≤n, 2≤j<k≤n+1 (resp. the set {Aα, Ỹjk, Yjk}1≤α≤n, 2≤j<k≤n+1) forms

a basis for g (resp. k). The bracket product of vectors given in (4.1) can be

obtained by

(4.2) [Ejk, Elm] = δklEjm − δmjElk
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for 1 ≤ j, k, l,m ≤ n + 1.

We put p =
∑n

α=1 RXα +
∑n

α=1 RXn+α. Then we have a Cartan decom-

position of g:

g = k + p, [k, k] ⊂ k, [k, p] ⊂ p, [p, p] ⊂ k.

We can identify p with the tangent space To(Hn) of Hn at the origin o. We

give on Hn, regarded as a symmetric space, a Riemannian metric <,> in

such a way that

(4.3)
< Xα, Xβ >= δαβ , < Xα, Xn+β >= 0

< Xn+α, Xn+β >= δαβ for 1 ≤ α, β ≤ n

at o. Such a Hn is the hyperbolic complex space form of constant holo-

morphic sectional curvature −4 of complex dimension n, which is denoted

by Hn(C). Then G acts on Hn(C) as a group of isometries. The complex

structure Ĵ on Hn(C) is given by at o

Ĵ(Xα) = X2n+1−α, for 1 ≤ α ≤ n.

For any element Z of g, we denote the k (resp. p)-component of Z by Zk

(resp. Zp).

Here we shall construct the Lie algebra ln =
∑2n−1

i=1 RZi such that Zi

satisfy and (3.18), (3.19) and (Zi)p = Xi = êi.

Let ∇ be the Riemannian connection of Hn(C) with respect to the Rie-

mannian metric <,> given in (4.3). Then it is also known that

(4.4) ∇(Zi)p
Zj = [(Zi)k, (Zj)p].

From now on we assume that m(y) = m(z). Let z = 1√
3
, and let Ci

j,k (1 ≤
i, j, k ≤ 2n−1) be scalar functions on Hn(C) such that Ci

j,k = −Cj
i,k. Using



Homogeneous real hypersurfaces in a complex hyperbolic space 43

(4.4), (3.18) and (3.20) we can put

(4.5)

Z1 = X1 +
5
3
zA1 − 2

3
zA2 − 2

√
2

3
zỸ23,

Z2 = X2 −
√

2
3

zA1 +
4
√

2
3

zA2 − z

3
Ỹ23,

Z2+α = X2+α − 3zỸ2,3+α +
∑

1≤µ<γ≤n−2

C2+α
3+µ,3+γY3+µ,3+γ ,

Zn+α = Xn+α − zY2,n+2−α −
√

2zY3,n+2−α,

Z2n−1 = X2n−1 − zY23 +
∑

1≤µ<γ≤n−2

C2n−1
3+µ,3+γY3+µ,3+γ ,

where θ̂2+α
2+β (X2+γ) = C2+γ

3+α,3+β , θ̂2+α
2+β (X2n−1) = C2n−1

3+α,3+β and 1 ≤ α, β, γ ≤
n− 2.

Then it follows that

(4.6)

[Z1, Z2] = 0, [Z1, Z2+α] = 2zZ2n−1−α, [Z1, Zn+α] = 0,

[Z1, Z2n−1] =
2
√

2
3

zZ1 − 2
3
zZ2, [Z2, Z2+α] = −

√
2zZ2n−1−α,

[Z2, Zn+α] = 0, [Z2, Z2n−1] =
4
3
zZ1 +

7
√

2
3

Z2,

[Z2+α, Z2+β ] =
∑

1≤λ≤n−2

(C2+β
3+α,3+λ − C2+α

3+β,3+λ)Z2+λ

+
∑

1≤µ<γ≤n−2

((dC2+α
3+µ,3+γ)(X2+β)

− (dC2+β
3+µ,3+γ)(X2+α))Y3+µ,3+γ ,

[Z2+α, Zn+β ] =
n−2∑
γ=1

C2+α
3+γ,n+2−βZ2n−1−γ

+
{

4zZ1 +
√

2zZ2 if α + β = n− 1
0 otherwise,

[Z2+α, Z2n−1] =
∑

1≤λ≤n−2

C2n−1
3+α,3+λi

Z2+λ

+
∑

1≤µ<γ≤n−2

((dC2+α
3+µ,3+γ)(X2n−1)− (dC2n−1

3+µ,3+γ)(X2+α)),

[Zn+α, Zn+β ] = 0,

[Zn+α, Z2n−1] =
√

2z Zn+α +
∑

1≤λ≤n−2

C2n−1
n+2−α,3+λZ2n−1−λ.
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For any Greek letters µ, γ and λ, we see that the coefficients C2+λ
3+µ,3+γ and

C2n−1
3+µ,3+γ of Z2+λ and Z2n−1 satisfy

(4.7)

(dC2+α
3+α,3+β)(X2+β)− (dC2+β

3+α,3+β)(X2+α) + (9z2 − 1)

=
n−2∑

λ=1

(C2+α
3+α,3+λC2+β

3+λ,3+β − C2+β
3+α,3+λC2+α

3+λ,3+β)

+
n−2∑

λ=1

(C2+α
3+β,3+λC2+λ

3+α,3+β − C2+β
3+α,3+λC2+λ

3+α,3+β)

and

(dC2n−1
3+α,3+β)(X2+µ)− (dC2+β

3+α,3+β)(X2n−1)

=
n−2∑

λ=1

(C2n−1
3+α,3+λC2+µ

3+λ,3+β − C2+µ
3+α,3+λC2n−1

3+λ,3+β

− C2+λ
3+α,3+βC2n−1

3+λ,3+µ)

respectively.

If we define a subspace ln of g by

ln =
2n−1∑

i=1

RZi,

then we see from (4.6) and (4.7) that ln is a Lie subalgebra of g. For this

Lie subalgebra ln we know the following:

Proposition 2. If we put n = 3 in (4.6) then it is easy to see that the

above Lie algebra l3 is solvable. In the case where n ≥ 4 we see from (4.6)

and (4.7) that the Lie algebra ln(i.e. n ≥ 4) is not solvable.

Now, we shall investigate the principal curvatures of each orbit in Hn(C)

under the Lie subgroup Ln. We put

σt = exp tX2n for t ∈ R,

which is a 1-parameter subgroup of G.
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Since the orbit Ln(σt(o)) is congruent to the orbit (Ad(σ−1
t )Ln)(o) under

Ad(σ−1
t )Ln in Hn(C), we shall compute the shape operator and the structure

vector on the latter. For simplicity, we put

ct = cosh t and st = sinh t.

Then we see that σt = ctE11 + ctE22 + stE12 + stE21 +
∑n+1

k=3 Ekk.

By a simple calculation, it follows from (4.5) that

(4.8)

Ad(σt)Z1 = (c2
t + s2

t −
8
3
ctstz)X1 − 2

√
2

3
stzX2

+ (
5
3
c2
t z + s2

t z − 2ctst)A1 − 2
3
zA2 − 2

√
2

3
ctzỸ23

Ad(σt)Z2 = −2
√

2
3

ctstzX1 + (ct − st

3
z)X2

+ (s− ct

3
z)Ỹ23 + (

√
2s2

t z −
√

2c2
t

3
z)A1 +

4
√

2
3

zA2

Ad(σt)Z2+α = (ct − 3stz)X2+α + (st − 3ctz)Ỹ2,3+α

+
∑

1≤µ<γ≤n−2

C2+α
3+µ,3+γY3+µ,3+γ

Ad(σt)Zn+α = (ct − stz)Xn+α + (st − ctz)Y2,n+2−α −
√

2zY3,n+2−α

Ad(σt)Z2n−1 = (ct − stz)X2n−1 + (st − ctz)Y23

+
∑

1≤µ<γ≤n−2

C2n−1
3+µ,3+γY3+µ,3+γ ,

for 1 ≤ α, µ, γ ≤ n− 2.

The vector ν = X2n is the normal vector of the orbit (Ad(σ−1
t )Ln)(o).

Then the shape operator Tν of (Ad(σ−1
t )Ln)(o) in the direction ν is given

by

Tν((Zj)p) = −[(Zj)k, ν](Ad(σ−1
t )Ln)(o)

for 1 ≤ j ≤ 2n− 1 ( see also [9]).
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Then it follows from (4.6) that

(c2
t + s2

t −
8
3
ctstz)Tν(X1)− 2

√
2

3
stzTν(X2)

= (4ctst − 8
3
(c2

t + s2
t )z)X1 − 2

√
2

3
ctzX2,

− 2
√

2
3

ctstzTν(X1) + (ct − st

3
z)Tν(X2)

= −2
√

2
3

z(c2
t + s2

t )X1 + (st − ct

3
z)X2,

(ct − 3stz)Tν(X2+α) = (st − 3ctz)X2+α

(ct − stz)Tν(Xn+α) = (st − cz)Xn+α,

(ct − stz)Tν(X2n−1) = (st − cz)X2n−1.

We see that tanh t − 3z 6= 0 because z2 = 1
3 . Therefore, from the above

equations, the shape operator Tν is given by

(4.9)

Tν(X1) =
12(tanh t− z)(tanh t− 2z)

(tanh t− 3z)3
X1 +

2
√

2sech3t

(tanh t− 3z)3
X2,

Tν(X2) =
2
√

2sech3t

(tanh t− 3z)3
X1 − 9z(tanh t− z)3

(tanh t− 3z)3
X2,

Tν(X2+α) = −z(tanh t− 3z)
tanh t− z

X2+α,

Tν(Xn+α) = −3z(tanh t− z)
tanh t− 3z

Xn+α,

Tν(X2n−1) = −3z(tanh t− z)
tanh t− 3z

X2n−1, (1 ≤ α ≤ n− 2)

for any t ∈ R \ {t | tanh t = z}.

It is easy to see from (4.9) that the orbit Ln(σt(o)) has four distinct

principal curvatures

−9z(tanh t− z)±
√

9− 6z tanh t− 5 tanh2 t

2(tanh t− 3z)
,

−z(tanh t− 3z)
tanh t− z

,
−3z(tanh t− z)

tanh t− 3z
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with multiplicities 1, 1, n−2, n−1 respectively, provided that t 6= 0, tanh−1z.

When t = 0, the orbit Ln(σ0(o)) has three distinct principal curvatures

0, −3z, −z

with multiplicities 1, n− 1, n− 1 respectively.

In the case where m(y) < m(z), by a similar computation as in the above,

we see that the orbit Ln(σt(o)) has four distinct principal curvatures

−9z(tanh t− z)±
√

9− 6z tanh t− 5 tanh2 t

2(tanh t− 3z)
,

−z(tanh t− 3z)
tanh t− z

,
−3z(tanh t− z)

tanh t− 3z

with multiplicities 1, 1, k, 2n−k−3 respectively, provided that t 6= 0, tanh−1z.

When t = 0, the orbit Ln(σ0(o)) has three distinct principal curvatures

0, −3z, −z

with multiplicities 1, k, 2n− k − 2 respectively.

From (4.9) we see that the structure vector field X1 of Ln(σt(o)) is not

principal.

Summing up the above results, we have

Theorem 3. There is an extrinsically homogeneous real hypersurface M

such that M has four distinct principal curvatures

−9z(tanh t− z)±
√

9− 6z tanh t− 5 tanh2 t

2(tanh t− 3z)
,

−z(tanh t− 3z)
tanh t− z

,
−3z(tanh t− z)

tanh t− 3z

with multiplicities 1, 1, k, (≥ 2) 2n− k− 3 and the structure vector field on

M is not principal.

Moreover if M is an extrinsically homogeneous real hypersurface with case

(3), then M must obtain the connection forms satisfying (3.15). Therefore if

such M is existed, then M is congruent to one of new model spaces Be type

type of second kind. From Theorem C, Theorem 1 and the above results,

we have
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Theorem 4. Let M be an extrinsically homogeneous real hypersurface of

3-type whose structure vector field is not principal. Then M is holomorphic

congruent to an open part of one of the new model spaces Be type of first

kind and Be type of second kind.
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