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ROBUST BOUNDARY CONTROL OF CHEMOTAXIS

REACTION DIFFUSION SYSTEM

Sang-Uk Ryu∗ and Yong Han Kang

Abstract. This paper is concerned with the robust boundary con-
trol of the chemotaxis reaction diffusion system. That is, we show
that the existence of the saddle point for the robust control problem
when the control and the disturbance are given by the boundary
condition.

1. Introduction

In this paper we consider the robust boundary control problem of the
chemotaxis reaction diffusion system:

∂y

∂t
= a

∂2y

∂x2
− b

∂

∂x

(
y
∂ρ

∂x

)
in (0, L)× (0, T ],

∂ρ

∂t
= d

∂2ρ

∂x2
+ fy − hρ in (0, L)× (0, T ],(1.1)

∂y

∂x
(0, t) =

∂y

∂x
(L, t) =

∂ρ

∂x
(0, t) = 0,

∂ρ

∂x
(L, t) = u(t) + λ(t) on (0, T ],

y(x, 0) = y0(x), ρ(x, 0) = ρ0(x) in (0, L).

Here, (0, L) is a bounded interval in R. a, b, d, f, h > 0 are given
positive numbers. y = y(x, t) describes the cell concentration in (0, L)
at time t, and ρ = ρ(x, t) the chemoattractant concentration in (0, L)
at time t. u(t) and λ(t) are the control function and the disturbance
function. We refer to [6, 7, 8] and the references for (1.1).
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In this paper, we are to find the saddle point for the functional J(u, λ)
of the form

J(u, λ) =

∫ T

0

‖y(u, λ)− yd‖2
H1(0,L)dt + γ‖u‖2

H2(0,T ) − l‖λ‖2
H2(0,T ).

Optimal and robust control problems for nonlinear parabolic equations
have already been published by many authors(see [2, 3, 4, 5, 7, 8, 9, 10,
11]). Ryu [11] has handled the optimal boundary control problem for
the chemotaxis system. In [9, 10], Ryu and Yun studied the distributed
robust control problems for the chemotaxis system with homogeneous
boundary conditions. However, this paper is concerned with the robust
boundary control problem for the chemotaxis system when the control
and the disturbance are given by the boundary condition.

Notations and inequalities: R denotes the real line. Let I = (0, l) be
an interval in R. Lp(I;H), 1 ≤ p ≤ ∞, denotes the Lp space of measur-
able functions in I with values in a Hilbert space H. C(I;H) denotes the
space of continuous functions in I with values in H. For simplicity, we
shall use a universal constant C to denote various constants which are
determined in each occurrence in a specific way by a, b, d, f, h, L. In a
case when C depends also on some parameter, say θ, it will be denoted
by Cθ.

We shall state some inequalities on the Sobolev spaces ([1]). When
s > 1

2
, Hs(I) ⊂ C(Ī) with the estimate

‖ · ‖C ≤ Cs‖ · ‖Hs .(1.2)

By (1.2), we observe that

∥∥∥ d

dx

(
y
dρ

dx

)∥∥∥
(H1)′

≤
{

C‖y‖L∞‖ρ‖H1

C‖y‖L2‖ ∂ρ
∂x
‖L∞

,(1.3)

where y ∈ H1(I), ρ ∈ H2
n(I) = {ρ ∈ H2(I) : ∂ρ

∂x
(0) = ∂ρ

∂x
(l) = 0}.

2. Existence of the solutions

In this section we recall the reformation of (1.1) as in [11]. First we
construct a lifting function for the boundary conditions,

φ(x, t) = m(t)
x2

2L
.
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Here, m(t) = u(t)+λ(t) and m ∈ H2
Γ(0, T ) = {α ∈ H2(0, T ) : α(0) = 0}.

Obviously
∣∣∣∂

iφ(x, t)

∂xi

∣∣∣ ≤ C|m(t)|, ∀x ∈ (0, L), ∀t ∈ [0, T ] (i = 0, 1, 2).(2.1)

Let us set w(x, t) = ρ(x, t)−φ(x, t). Then the system (1.1) is equivalent
to the one:

∂y

∂t
= a

∂2y

∂x2
− b

∂

∂x

(
y
∂(w + φ)

∂x

)
in (0, L)× (0, T ],

∂w

∂t
= d

∂2w

∂x2
+ fy − hw + gm(x, t) in (0, L)× (0, T ],(2.2)

∂y

∂x
(0, t) =

∂y

∂x
(L, t) =

∂w

∂x
(0, t) =

∂w

∂x
(L, t) = 0 on (0, T ],

y(x, 0) = y0(x), w(x, 0) = w0 in (0, L).

Here, w0 = ρ0(x) and gm(x, t) = d∂2φ
∂x2 − hφ− ∂φ

∂t
.

Let A1 = −a ∂2

∂x2 + a and A2 = −d ∂2

∂x2 + h with the same domain

D(Ai) = H2
n(0, L) = {z ∈ H2(0, L) : ∂z

∂x
(0) = ∂z

∂x
(L) = 0} (i = 1, 2).

Then, Ai are two positive definite self-adjoint operators in L2(0, L). We
set two product Hilbert spaces V ⊂ H as

V = H1(0, L)×H2
n(0, L), H = L2(0, L)×H1(0, L).

By identifying H with its dual space, we consider V ⊂ H = H′ ⊂ V ′. It
is then seen that

V ′ = (H1(0, L))′ × L2(0, L).

We set also a symmetric bilinear form on V × V :

a(Y, Ỹ ) = a

∫ L

0

dy

dx

dỹ

dx
dx + a

∫ L

0

yỹdx +
(
A

1/2
2 w, A

1/2
2 w̃

)
L2 ,

where Y =
(

y
w

)
, Ỹ =

(
ỹ
w̃

) ∈ V . Obviously, the form satisfies A is the pos-
itive definite self-adjoint operator on H defined by a symmetric bilinear

form a(Y, Ỹ ) on V , 〈AY, Ỹ 〉V,V ′ = a(Y, Ỹ ), which satisfies

|a(Y, Ỹ )| ≤ M‖Y ‖V‖Ỹ ‖V , Y, Ỹ ∈ V ,(a.i)

a(Y, Y ) ≥ δ‖Y ‖2
V , Y ∈ V(a.ii)

with some δ and M > 0. This form then defines a linear isomorphism

A =

(
A1 0
0 A2

)
from V to V ′, and the part of A inH is a positive definite
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self-adjoint operator in H. Let U be a closed bounded convex subset in
H2

Γ(0, T ).
(2.2) is, then, formulated as an abstract equation

dY

dt
+ AY = Fm(Y ) + Gm(t), 0 < t ≤ T,(2.3)

Y (0) = Y0

in the space V ′. Here, Fm(·) : V → V ′ is the mapping

Fm(Y ) =

(
ay − b ∂

∂x

(
y ∂(w+φ)

∂x

)

fy

)
and Gm(t) =

(
0

gm(x, t)

)
.

Y0 is defined by Y0 =
(

y0

w0

)
.

For all m ∈ U , Fm(·) satisfies the following conditions(see [11]):

For each η > 0, there exists an increasing continuous function µη :
[0,∞) → [0,∞) such that

‖Fm(Y )‖V ′ ≤ η‖Y ‖V + µη(‖Y ‖H), Y ∈ V , a.e. (0, T );(f.i)

(f.ii) ‖Fm(Ỹ )− Fm(Y )‖V ′ ≤ η‖Ỹ − Y ‖V
+(‖Ỹ ‖V+‖Y ‖V+1)µη(‖Ỹ ‖H+‖Y ‖H)‖Ỹ −Y ‖H, Ỹ , Y ∈ V , a.e. (0, T ).

Since m ∈ U , we see that Gm(·) ∈ L2(0, T ;V ′). We then obtain the
following result (For the proof, see Ryu and Yagi [8]).

Theorem 2.1. If Y0 ∈ H, there exists a unique weak solution

Y ∈ H1(0, S;V ′) ∩ C([0, S];H) ∩ L2(0, S;V)

to (2.3), the number S ∈ (0, T ] is determined by the norm ‖Gm‖L2(0,T ;V ′)
and ‖Y0‖H.

3. Existence of the robust control

Let Uad and Vad be closed, convex, bounded subsets of H2
Γ(0, T ). Let

S > 0 be such that for each (u, λ) ∈ Uad × Vad, (2.3) has a unique weak
solution Y (u, λ) ∈ H1(0, S;V ′) ∩ C([0, S];H) ∩ L2(0, S;V). Then, our
problem is obviously formulated as follows:

(P) J(ū, λ) ≤ J(ū, λ̄) ≤ J(u, λ̄) ∀(u, λ) ∈ Uad × Vad,
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where

J(u, λ) =

∫ S

0

‖DY (u, λ)− Yd‖2
Vdt + γ‖u‖2

H2(0,S) − l‖λ‖2
H2(0,S).

Here, D
(

y
w

)
=

(
y
0

)
and Yd =

(
yd

0

)
is a fixed element of L2(0, S;V) with

yd ∈ L2(0, S; H1(0, L)). γ and l are positive constants.
The mapping Fu,λ(·) : V → V ′ is defined by

Fu,λ(Y ) =

(
ay − b ∂

∂x

(
y ∂(w+φ)

∂x

)

fy

)
, Y =

(
y

w

)
∈ V ,

where φ(x, t) = (u(t) + λ(t)) x2

2L
. Then, we have the following result.

Lemma 3.1. Let (u1, λ1) and (u2, λ2) in Uad×Vad. Let Y1 = Y (u1, λ1)
and Y2 = Y (u2, λ2) be solutions of (2.3) with respect to (u1, λ1) and
(u2, λ2), respectively. Then, we have

(3.1) ‖Y1(t)− Y2(t)‖2
H + δ

∫ t

0

‖Y1(s)− Y2(s)‖2
Vds

≤ C(‖u1(t)− u2(t)‖2
H2(0,S) + ‖λ1(t)− λ2(t)‖2

H2(0,S)), 0 ≤ t ≤ S.

Proof. The proof is similar to that of [11, Theorem 3.2].

Moreover, the mapping Fu,λ(·) : V → V ′ must be a first-order Fréchet
differentiable with the derivative

F ′
u,λ(Y )Z =

(
az1 − b ∂

∂x

(
z1

∂(w+φ)
∂x

)
− b ∂

∂x

(
y ∂z2

∂x

)

fz1

)
,

where Y =
(

y
w

)
, Z =

(
z1

z2

) ∈ V . Then, we have the following conditions.

Lemma 3.2. For each η > 0, there exists an increasing continuous

functions νη : [0,∞) → [0,∞) such that for Y, Ỹ , Z, P ∈ V ,

(f.iii) |〈F ′
u,λ(Y )Z, P 〉V ′×V |

≤
{

η‖Z‖V‖P‖V + (‖Y ‖V + 1)νη(‖Y ‖H)‖Z‖H‖P‖V , a.e. (0, S),
η‖Z‖V‖P‖V + (‖Y ‖V + 1)νη(‖Y ‖H)‖Z‖V‖P‖H, a.e. (0, S),

‖F ′
u,λ(Ỹ )Z − F ′

u,λ(Y )Z‖V ′ ≤ C‖Ỹ − Y ‖H‖Z‖V , a.e. (0, S).(f.iv)
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Proof. By (1.3) and (2.1), it is seen that
∥∥∥ ∂

∂x

(
z1

∂(w + φ)

∂x

)
+

∂

∂x

(
y
∂z2

∂x

)∥∥∥
(H1)′

≤ C(‖z1‖L∞‖w + φ‖H1 + ‖y‖H1‖z2‖H1)

≤ C(‖z1‖1/2

H1 ‖z1‖1/2

L2 (‖w‖H1 + ‖φ‖H1) + ‖y‖H1‖z2‖H1)

≤ ε‖z1‖H1 + Cε(‖y‖H1 + 1)(‖w‖2
H1 + 1)(‖z1‖L2 + ‖z2‖H1)

with an arbitrary ε > 0. Therefore, (f.iii) holds.
On the other hand, by (1.2) and (1.3),

∥∥∥ ∂

∂x

(
(y − ỹ)

∂z2

∂x

)
− ∂

∂x

(
z1

∂(w − w̃)

∂x

)∥∥∥
(H1)′

≤ C(‖y − ỹ‖L2‖z2‖H2 + ‖w − w̃‖H1‖z1‖H1).

Therefore, (f.iv) holds.

Proposition 3.3. For any fixed λ ∈ Vad, the mapping u → Y (u, λ)
from Uad into H1(0, S;V ′) ∩ L2(0, S;V) is differentiable in the sense

Y (u + hv, λ)− Y (u, λ)

h
→ Z in H1(0, S;V ′) ∩ L2(0, S;V)

as h → 0, where u, v ∈ Uad and u+hv ∈ Uad. Moreover, Z = Z(u, λ; v, 0)
satisfies the linear equation

dZ

dt
+ AZ − F ′

u,λ(Y (u, λ))Z = Bv(Y (u, λ)) + Gv(t), 0 < t ≤ S,(3.2)

Z(0) = 0,

where Bv(Y (u, λ)) =
(−b ∂

∂x

(
y ∂φv

∂x

)
0

)
and φv = v(t) x2

2L
.

Proof. Let u, v ∈ Uad and 0 ≤ h ≤ 1. Let Yh = Y (uh, λ) and Y =
Y (u, λ) be the solutions of (2.3) corresponding to uh = u + hv and u,
respectively.

Step 1.
{

Yh−Y
h

}
h>0

is bounded in H1(0, S;V ′)∩L2(0, S;V). Let Ỹ =

Yh−Y
h

. We consider

dỸ

dt
+ AỸ − Fuh,λ(Yh)− Fu,λ(Y )

h
= Gv(t), 0 < t ≤ S,(3.3)

Ỹ (0) = 0.
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By (1.3) and (2.1), we have

(3.4)
∥∥∥Fuh,λ(Yh)− Fu,λ(Yh)

h

∥∥∥
V ′

=
∥∥∥
(−b ∂

∂x

(
yh

∂φv

∂x

)

0

)∥∥∥
V ′

=
∥∥∥b

∂

∂x

(
yh

∂φv

∂x

)∥∥∥
(H1)′

≤ C‖yh‖L2

∥∥∥∂φv

∂x

∥∥∥
L∞

≤ C‖Yh‖H, a.e. (0, S)

and

(3.5)
∥∥∥Fu,λ(Yh)− Fu,λ(Y )

h

∥∥∥
V ′

=
∥∥∥
(

ayh−y
h
− b ∂

∂x

(
yh−y

h
∂wh

∂x

)
− b ∂

∂x

(
y ∂

∂x
wh−w

h

)
− b ∂

∂x

(
yh−y

h
∂φ
∂x

)

f yh−y
h

)∥∥∥
V ′

≤ C
(∥∥∥yh − y

h

∥∥∥
L2
‖wh‖H2 + ‖y‖H1

∥∥∥wh − w

h

∥∥∥
H1

+
∥∥∥yh − y

h

∥∥∥
L2

)

≤ C(‖Yh‖V + ‖Y ‖V + 1)‖Ỹ ‖H, a.e. (0, S).

Taking the scalar product with Ỹ to (3.3) and using (3.4), (3.5), we
obtain that

1

2

d

dt
‖Ỹ (t)‖2

H +
δ

2
‖Ỹ (t)‖2

V ≤ C(‖Yh(t)‖2
V + ‖Y (t)‖2

V + 1)‖Ỹ (t)‖2
H

+ C(‖Yh(t)‖2
H + ‖Gv(t)‖2

V ′).

Using Gronwall’s inequality, we obtain that

‖Ỹ (t)‖2
H + δ

∫ t

0

‖Ỹ (t)‖2
Vds

≤ C
(
‖Yh(t)‖2

L∞(0,S;H) + ‖Gv(t)‖2
L2(0,S;V ′)

)
e

∫ S
0 C(‖Yh(t)‖2V+‖Y (t)‖2V+1)ds

for all t ∈ [0, S]. Since v ∈ Uad, Gv(t) ∈ L2(0, S;V ′). Hence, Yh−Y
h

is
bounded in H1(0, S;V ′) ∩ L2(0, S;V).

Step 2. Yh−Y
h

converges weakly to the unique solution Z =
(

z1

z2

)
of

(3.2) in H1(0, S;V ′) ∩ L2(0, S;V) as h → 0. From Step 1, we see that

Yh − Y

h
→ Z weakly in H1(0, S;V ′) ∩ L2(0, S;V)
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and

Yh − Y

h
→ Z strongly in L2(0, S;H)(3.6)

as h → 0. Let us verify that Z =
(

z̄1

z̄2

)
is a solution of (3.2). First, we

show that for Ψ(t) =
(

ψ1(t)
ψ2(t)

) ∈ C([0, S];V),

∫ S

0

〈Fu,λ(Yh)− Fu,λ(Y )

h
, Ψ(t)

〉
V ′,V

dt →
∫ S

0

〈F ′
u,λ(Y )Z, Ψ(t)〉V ′,Vdt

(3.7)

as h → 0. Indeed, by direct calculation

Fu,λ(Yh)− Fu,λ(Y )

h
− F ′

u,λ(Y )Z

=

(
aw̃1 − b ∂

∂x

(
w̃1

∂(wh+φ)
∂x

)
− b ∂

∂x

(
y ∂w̃2

∂x

)
− b ∂

∂x

(
z̄1

∂(wh−w)
∂x

)

fw̃1

)
,

where w̃1 = yh−y
h
− z̄1 and w̃2 = wh−w

h
− z̄2. For ψ1 ∈ C([0, S]; H1(0, L)),

∫ S

0

〈 ∂

∂x

(
w̃1

∂(wh + φ)

∂x

)
+

∂

∂x

(
y
∂w̃2

∂x

)
, ψ1

〉
(H1)′,H1

dt

≤C(‖w̃1‖L2(0,S;L2)(‖wh‖L2(0,S;H2) + 1)‖ψ1‖C([0,S];H1)

+ ‖y‖L2(0,S;H1)‖w̃2‖L2(0,S;H1)‖ψ1‖C([0,S];H1))

and
∫ S

0

〈 ∂

∂x

(
z̄1

∂(wh − w)

∂x

)
, ψ1

〉
(H1)′,H1

dt

≤ C‖z̄1‖L2(0,S;H1)‖wh − w‖L2(0,S;H1)‖ψ1‖C([0,S];H1).

From (3.1) and (3.6), it is seen that (3.7) holds.
Moreover, since

∫ S

0

〈 ∂

∂x

(
(yh − y)

∂φv

∂x

)
, ψ1

〉
(H1)′,H1

dt

≤ C‖yh − y‖L2(0,S;L2)‖ψ1‖L2(0,S;H1),

it is seen from (3.1) that
∫ S

0

〈Fuh,λ(Yh)− Fu,λ(Yh)

h
, Ψ(t)

〉
V ′,V

dt →
∫ S

0

〈Bv(Y ), Ψ(t)〉V ′,Vdt.
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By the uniqueness, we see that Z = Z. Hence, Yh−Y
h

converges weakly
to the unique solution Z of (3.2) in H1(0, S;V ′)∩L2(0, S;V) as h → 0.

Step 3. Yh−Y
h

→ Z strongly in H1(0, S;V ′) ∩ L2(0, S;V) as h → 0.

W̃ = Yh−Y
h

− Z satisfies

dW

dt
+ AW −

(Fu,λ(Yh)− Fu,λ(Y )

h
− F ′

u,λ(Y )Z
)

(3.8)

=
(Fuh,λ(Yh)− Fu,λ(Yh)

h
−Bv(Y )

)
, 0 < t ≤ S,

W (0) = 0.

Applying (1.2), (1.3) and (2.1), we obtain that

(3.9)
∥∥∥Fu,λ(Yh)− Fu,λ(Y )

h
− F ′

u,λ(Y )Z
∥∥∥
V ′

≤ C(‖Yh‖V + ‖Y ‖V + 1)‖W̃‖H + C‖Yh − Y ‖H‖Z‖V , a.e. (0, S)

and ∥∥∥Fuh,λ(Yh)− Fu,λ(Yh)

h
−Bv(Y )

∥∥∥
V ′
≤ C‖Yh − Y ‖H, a.e. (0, S).(3.10)

Taking the scalar product of the equation of (3.8) with W̃ and using
(3.9), (3.10), we obtain that

1

2

d

dt
‖W̃ (t)‖2

H +
δ

2
‖W̃ (t)‖2

V ≤ C(‖Yh(t)‖2
V + ‖Y (t)‖2

V + 1)‖W̃ (t)‖2
H

+ C(‖Z(t)‖2
V + 1)‖Yh(t)− Y (t)‖2

H.

From Gronwall’s inequality,

‖W̃ (t)‖2
H+δ

∫ t

0

‖W̃ (s)‖2
Vds ≤ C‖Yh(t)−Y (t)‖2

L∞(0,S;H)(‖Z‖2
L2(0,S;V)+1).

Since Yh → Y strongly in L∞(0, S;H), it follows that Yh−Y
h

is strongly
convergent to Z in H1(0, S;V ′) ∩ L2(0, S;V).

Proposition 3.4. The solution Z(u, λ; v, 0) of (3.2) satisfies the es-
timates (∀u, v, u1, u2 ∈ Uad):

‖Z(u, λ; v, 0)‖L∞(0,S;H)∩L2(0,S;V) ≤ C‖v(t)‖H2(0,S),(3.11)

(3.12) ‖Z(u1, λ; v, 0)− Z(u2, λ; v, 0)‖L2(0,S;V)

≤ C‖u1(t)− u2(t)‖H2(0,S)‖v(t)‖H2(0,S).
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Proof. Let Z = Z(u, λ; v, 0) be the solution of (3.2). From (1.3) and
(2.1), we have

(3.13) ‖Bv(Y )‖V ′ =
∥∥∥b

∂

∂x

(
y
∂φv

∂x

)∥∥∥
(H1)′

≤ ‖y‖L2

∥∥∥∂φv

∂x

∥∥∥
L∞

≤ C|v(t)|‖Y ‖H
and

‖Gv(t)‖V ′ = ‖gv(x, t)‖L2 ≤ C
(
|v(t)|+

∣∣∣dv(t)

dt

∣∣∣
)
.(3.14)

Taking the scalar product with Z to (3.2) and using (f.iii), (3.13), (3.14)
we have

d

dt
‖Z(t)‖2

H + δ‖Z(t)‖2
V ≤ (‖Y (u, λ)‖2

V + 1)ν̃(‖Y (u, λ)‖2
H)‖Z(t)‖2

H

+ C(1 + ‖Y (t)‖2
H)

(
|v(t)|2 +

∣∣∣dv(t)

dt

∣∣∣
2)

,

where ν̃ : [0,∞) → [0,∞) is some increasing continuous function. Using
Gronwall’s inequality, we obtain

‖Z(t)‖2
H + δ

∫ S

0

‖Z(t)‖2
Vdt

≤ C‖v(t)‖2
H2(0,S)e

∫ S
0 (‖Y (u,λ)‖2V+1)ν̃(‖Y (u,λ)‖2H)ds ≤ C‖v(t)‖2

H2(0,S).

Hence, (3.11) is verified.
On the other hand, let Zi = Z(ui, λ; v, 0) (i = 1, 2) be the solutions

of

dZi

dt
+ AZi − F ′

ui,λ
(Yi)Zi = Bv(Yi) + Gv(t), 0 < t ≤ S,

Zi(0) = 0,

where Y1 = Y (u1, λ) and Y2 = Y (u2, λ) are the solution of (2.3) with
respect to (u1, λ) and (u2, λ), respectively. Then Z3 = Z1 − Z2 satisfies
the equation

dZ3

dt
+ AZ3 − F ′

u1,λ(Y1)Z3 = (F ′
u1,λ(Y1)− F ′

u2,λ(Y1))Z2(3.15)

+ (F ′
u2,λ(Y1)− F ′

u2,λ(Y2))Z2 + Bv(Y1)−Bv(Y2),

Z3(0) = 0.
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From (1.3) and (2.1), we have

‖(F ′
u1,λ(Y1)− F ′

u2,λ(Y1))Z2‖V ′ ≤ C|u1(t)− u2(t)|‖Z2‖H,(3.16)

‖Bv(Y1)−Bv(Y2)‖V ′ ≤ C|v(t)|‖Y1 − Y2‖H.(3.17)

Taking the scalar product with Z3 to (3.15) and using (f.iii), (f.iv), (3.16),
(3.17), we obtain that

1

2

d

dt
‖Z3(t)‖2

H +
δ

2
‖Z3(t)‖2

V

≤ (‖Y1(t)‖2
V + 1)ν̃(‖Y1(t)‖2

H)‖Z3(t)‖2
H + C(‖Z2(t)‖2

V‖Y1(t)− Y2(t)‖2
H

+ |u1(t)− u2(t)|2‖Z2‖2
H + |v(t)|2‖Y1(t)− Y2(t)‖2

H),

where ν̃ : [0,∞) → [0,∞) is some increasing continuous function. Using
Gronwall’s inequality and applying (3.1) and (3.11),

‖Z3(t)‖2
H + δ

∫ t

0

‖Z3(s)‖2
Vds ≤C

(
‖Y1(t)− Y2(t)‖2

L∞(0,S;H)‖Z2‖2
L2(0,S;V)

+ ‖u1(t)− u2(t)‖2
L2(0,S)‖Z2‖2

L∞(0,S;H)

+ ‖v(t)‖2
L2(0,S)‖Y1(t)− Y2(t)‖2

L∞(0,S;H)

)

≤C‖u1(t)− u2(t)‖2
H2(0,S)‖v(t)‖2

H2(0,S)

for all t ∈ [0, S]. Hence, (3.12) is verified.

Proposition 3.5. For any fixed u ∈ Uad, the mapping λ → Y (u, λ)
from Vad into H1(0, S;V ′) ∩ L2(0, S;V) is differentiable in the sense

Y (u, λ + hλ̃)− Y (u, λ)

h
→ Z̃ in H1(0, S;V ′) ∩ L2(0, S;V)

as h → 0, for λ, λ̃ ∈ Vad and λ + hλ̃ ∈ Vad. Moreover, Z̃ = Z̃(u, λ; 0, λ̃)
satisfies the linear equation

dZ̃

dt
+ AZ̃ − F ′

u,λ(Y (u, λ))Z̃ = Bλ̃(Y (u, λ)) + Gλ̃(t), 0 < t ≤ S,

Z̃(0) = 0.

Moreover, the solution Z̃(u, λ; 0, λ̃) satisfies the estimates (∀λ̃, λ, λ1, λ2 ∈
Vad):

‖Z̃(u, λ; 0, λ̃)‖L∞(0,S;H)∩L2(0,S;V) ≤ C‖λ̃‖H2(0,S),

‖Z̃(u, λ1; 0, λ̃)− Z̃(u, λ2; 0, λ̃)‖L2(0,S;V) ≤ C‖λ1 − λ2‖H2(0,S)‖λ̃‖H2(0,S).
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Proof. The proof is similar to that of Proposition 3.3 and Proposition
3.4.

Proposition 3.6. There exist γ̄ and l̄ such that, for γ ≥ γ̄ and l ≥ l̄,
we have

(1) ∀λ ∈ Vad, u → J(u, λ) is convex lower semicontinuous,

(2) ∀u ∈ Uad, λ → J(u, λ) is concave upper semicontinuous.

Proof. Let J1 be the map u → J(u, λ) and let J2 be the map λ →
J(u, λ). To obtain the existence of the robust control problem, we prove
that J1 is convex and lower semicontinuous for all λ ∈ Vad, and J2 is
concave and upper semicontinuous for all u ∈ Uad. Firstly we prove
that the convexity of J1 and the concavity of J2. In order to prove the
convexity, it is enough to prove that we have

J ′1(u)(u− v)− J ′1(v)(u− v) ≥ 0

for all u, v ∈ Uad([2], [12]). According to the definition of J1,

(3.18)

J ′1(u)(u− v)− J ′1(v)(u− v) =

∫ S

0

〈Z1 − Z2, D
∗J (DY2 − Yd)〉V,V ′dt

+

∫ S

0

〈D(Y1 − Y2), DZ2〉Vdt + γ〈u− v, u− v〉H2(0,S).

Here, J : V → V ′ is a canonical isomorphism and Z1 = Z(u, λ; u− v, 0)
and Z2 = Z(v, λ; u− v, 0) satisfies

dZi

dt
+ AZi − F ′

u,λ(Yi)Zi = Bu−v(Yi) + Gu−v(t), 0 < t ≤ S,

Zi(0) = 0,

where Y1 = Y (u, λ) and Y2 = Y (v, λ). According to (3.1), (3.11) and
(3.12), we have

(3.19)

∫ S

0

〈Z1 − Z2, D
∗J (DY2 − Yd)〉V,V ′dt ≤

( ∫ S

0

‖Z1 − Z2‖2
Vdt

)1/2

× ‖D∗‖
( ∫ S

0

‖(DY2 − Yd)‖2
Vdt

)1/2

≤ C1‖u(t)− v(t)‖2
H2(0,S)
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and

(3.20)

∫ S

0

〈D(Y1 − Y2), DZ2〉Vdt ≤ ‖D‖2
( ∫ S

0

‖(Y1 − Y2)‖2
Vdt

)1/2

×
( ∫ S

0

‖Z2‖2
Vdt

)1/2

≤ C2‖u− v‖2
H2(0,S).

From (3.18), (3.19) and (3.20), we have under assumption γ ≥ γ̄ =
C1 + C2,

J ′1(u)(u− v)− J ′1(v)(u− v) ≥ 0

and obtain the convexity of J1. By using Proposition 3.5, we can find l̄
such that for l ≥ l̄ we have the concavity of J2.

As proved in [9, Proposition 3.6], we can obtain the lower semicon-
tinuous of J1 for all λ ∈ Vad and the upper semicontinuous of J2 for all
u ∈ Uad.

Then, we have the following result.

Theorem 3.7. Assume that Uad and Vad are non-empty, closed, con-
vex, bounded subsets of H2

Γ(0, S) and γ ≥ γ̄ and l ≥ l̄. Then, there
exists a saddle point (ū, λ̄) such that

J(ū, λ) ≤ J(ū, λ̄) ≤ J(u, λ̄) ∀(u, λ) ∈ Uad × Vad.
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