RECURSIONS FOR TRACES OF SINGULAR MODULI

Chang Heon Kim*

Abstract. We will derive recursion formulas satisfied by the traces of singular moduli for the higher level modular function.

1. Introduction

Let \mathfrak{H} be the complex upper half plane and let Γ be the full modular group $P S L_{2}(\mathbb{Z})$. Since Γ acts on \mathfrak{H} by linear fractional transformations, we get the modular curve $\Gamma \backslash \mathfrak{H}^{*}$, as the projective closure of the smooth affine curve $\Gamma \backslash \mathfrak{H}$. Since the genus of $\Gamma \backslash \mathfrak{H}^{*}$ is zero, the function field of $\Gamma \backslash \mathfrak{H}^{*}$ is the rational function field $\mathbb{C}(j)$. Here j is the modular invariant which is uniquely characterized by $j(\infty)=\infty, j\left(\frac{-1+\sqrt{-3}}{2}\right)=0$ and $j(\sqrt{-1})=1728$. The property $j(\tau+1)=j(\tau)$ implies that j admits a Fourier expansion with respect to $q=e^{2 \pi i \tau}(\tau \in \mathfrak{H})$, which is called a q-series (or q-expansion) as follows:

$$
j(\tau)=q^{-1}+744+196884 q+\cdots
$$

"Singular values" or "singular moduli" is the classical name for the values assumed by the modular invariant $j(\tau)$ (or by other modular functions) when the argument is an imaginary quadratic irrationality. These values are algebraic numbers and have been studied intensively since the time of Kronecker and Weber. In [2], formulas for their norms and for the norms of their differences were obtained. In [3], a result for their traces and a number of generalizations were also obtained. Let d denote a positive integer congruent to 0 or 3 modulo 4 . We denote by \mathcal{Q}_{d} the set of positive definite binary quadratic forms $Q=[a, b, c]=$ $a X^{2}+b X Y+c Y^{2}(a, b, c \in \mathbb{Z})$ of discriminant $-d$, with usual action of the modular group Γ. To each $Q \in \mathcal{Q}_{d}$, we associate its unique root

Received March 21, 2008; Accepted April 05, 2008.
2000 Mathematics Subject Classification: 11F03, 11F11, 11F30.
Key words and phrases: modular function, singular moduli, Jacobi form.
This work was supported by a research grant from Seoul Women's University (2007).
$\alpha_{Q} \in \mathfrak{H}$. Let $\mathbf{t}(d)$ be the (weighted) trace of a singular modulus of discriminant $-d$, that is,

$$
\mathbf{t}(d)=\sum_{Q \in \mathcal{Q}_{d} / \Gamma} \frac{1}{\left|\overline{\bar{\Gamma}_{Q}}\right|}\left(j\left(\alpha_{Q}\right)-744\right) .
$$

Here $\bar{\Gamma}_{Q}=\left\{\gamma \in \bar{\Gamma}=P S L_{2}(\mathbb{Z}) \mid Q \circ \gamma=Q\right\}$. In addition we set $\mathbf{t}(-1)=-1, \mathbf{t}(0)=2$ and $\mathbf{t}(d)=0$ for $d<-1$ or $d \equiv 1,2(\bmod 4)$. Zagier's trace formula [3, Theorem 1] says that the series $\sum_{d \in \mathbb{Z}} \mathbf{t}(d) q^{d}$ $\left(q=e^{2 \pi i \tau}, \tau \in \mathfrak{H}\right)$ is a modular form of weight $3 / 2$ on $\Gamma_{0}(4)\left(=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in\right.\right.$ $\left.S L_{2}(\mathbb{Z}): 4 \mid c\right\}$), holomorphic in \mathfrak{H} and meromorphic at cusps. Moreover he derived a recursion formula for $\mathbf{t}(d)$ (see [3, Theorem 2]).

Let $\Gamma_{0}(N)^{*}$ be the group generated by $\Gamma_{0}(N)\left(=\left\{\left(\begin{array}{cc}a & b \\ c & d\end{array}\right) \in S L_{2}(\mathbb{Z})\right.\right.$: $N \mid c\}$) and all Atkin-Lehner involutions W_{e} for $e \| N$. Here $e \| N$ denotes that $e \mid N$ and $(e, N / e)=1$, and W_{e} can be represented by a matrix $\frac{1}{\sqrt{e}}\left(\begin{array}{cc}e x & y \\ N z & e w\end{array}\right)$ with $\operatorname{det} W_{e}=1$ and $x, y, z, w \in \mathbb{Z}$. There are only finitely many values of N for which $\Gamma_{0}(N)^{*}$ is of genus 0 . In particular, if we let \mathfrak{S} denote the set of prime values for such N, then

$$
\mathfrak{S}=\{2,3,5,7,11,13,17,19,23,29,31,41,47,59,71\} .
$$

For each $p \in \mathfrak{S}$, let j_{p}^{*} be the corresponding Hauptmodul. Let d be an integer ≥ 0 such that $-d$ is congruent to a square modulo $4 p$. We choose an integer $\beta(\bmod 2 p)$ with $\beta^{2} \equiv-d(\bmod 4 p)$ and consider the set $\mathcal{Q}_{d, p, \beta}=\left\{[a, b, c] \in \mathcal{Q}_{d} \mid a \equiv 0(\bmod p), b \equiv \beta(\bmod 2 p)\right\}$ on which $\Gamma_{0}(p)$ acts. we define the trace $\mathbf{t}^{(p)}(d)$ by

$$
\mathbf{t}^{(p)}(d)=\sum_{Q \in \mathcal{Q}_{d, p, \beta} / \Gamma_{0}(p)} \frac{1}{\left|\bar{\Gamma}_{0}(p)_{Q}\right|} j_{p}^{*}\left(\alpha_{Q}\right) .
$$

Here are some numerical examples when $p=2$: first, we note that j_{2}^{*} can be expressed by means of Dedekind eta functions, that is,

$$
j_{2}^{*}(\tau)=\left(\frac{\eta(\tau)}{\eta(2 \tau)}\right)^{24}+24+4096\left(\frac{\eta(2 \tau)}{\eta(\tau)}\right)^{24}
$$

where $\eta(\tau)=q^{1 / 24} \prod_{n=1}^{\infty}\left(1-q^{n}\right)$. Then
$\mathbf{t}^{(2)}(4)=\frac{1}{2} j_{2}^{*}\left(\alpha_{[2,-2,1]}\right)=-52, \mathbf{t}^{(2)}(7)=j_{2}^{*}\left(\alpha_{[2,-1,1]}\right)=-23, \mathbf{t}^{(2)}(8)=$ $j_{2}^{*}\left(\alpha_{[2,0,1]}\right)=152, \mathbf{t}^{(2)}(12)=j_{2}^{*}\left(\alpha_{[2,2,2]}\right)+j_{2}^{*}\left(\alpha_{[4,2,1]}\right)=-496, \mathbf{t}^{(2)}(15)=$ $j_{2}^{*}\left(\alpha_{[4,1,1]}\right)+j_{2}^{*}\left(\alpha_{[2,1,2]}\right)=-1, \mathbf{t}^{(2)}(16)=\frac{1}{2} j_{2}^{*}\left(\alpha_{[4,-4,2]}\right)+j_{2}^{*}\left(\alpha_{[2,0,2]}\right)+$ $j_{2}^{*}\left(\alpha_{[4,0,1]}\right)=1036$, etc.

In this article we will derive the following recursion formula for $\mathbf{t}^{(2)}(d)$:

Theorem 1.1. For all integers $n \geq 1$ we have the identities

$$
\begin{aligned}
& \boldsymbol{t}^{(2)}(8 n-4)=-(120 n-20) \sigma_{3}(n)+42 \sigma_{5}(n) \\
&-\sum_{3 \leq r \leq \sqrt{8 n+1}} \frac{r^{4}-r^{2}}{12} \boldsymbol{t}^{(2)}\left(8 n-r^{2}\right) \\
& \boldsymbol{t}^{(2)}(8 n-1)=-240 \sigma_{3}(n)-\sum_{2 \leq r \leq \sqrt{8 n+1}} r^{2} \boldsymbol{t}^{(2)}\left(8 n-r^{2}\right) \\
& \boldsymbol{t}^{(2)}(8 n)=-2 \sum_{1 \leq r \leq \sqrt{8 n+1}} \boldsymbol{t}^{(2)}\left(8 n-r^{2}\right)
\end{aligned}
$$

where $\sigma_{k}(n)=\sum_{\substack{d>0 \\ d \mid n}} d^{k}$.
We note that the above recursion determines $\mathbf{t}^{(2)}(d)$ completely from the initial value $\mathbf{t}^{(2)}(-1)=-1$:
$\mathbf{t}^{(2)}(4)=-100 \sigma_{3}(1)+42 \sigma_{5}(1)-\frac{3^{4}-3^{2}}{12} \mathbf{t}^{(2)}(-1)=-52$,
$\mathbf{t}^{(2)}(7)=-240 \sigma_{3}(1)-2^{2} \mathbf{t}^{(2)}(4)-3^{2} \mathbf{t}^{(2)}(-1)=-23$,
$\mathbf{t}^{(2)}(8)=-2\left(\mathbf{t}^{(2)}(7)+\mathbf{t}^{(2)}(4)+\mathbf{t}^{(2)}(-1)\right)=152$, etc.

2. Proof of Theorem 1.1

To prove Theorem 1.1 we first recall some basic facts on Jacobi forms. A (holomorphic) Jacobi form of weight k and index p is defined to be a holomorphic function $\phi: \mathfrak{H} \times \mathbb{C} \rightarrow \mathbb{C}$ satisfying the two transformation laws

$$
\begin{aligned}
\phi\left(\frac{a \tau+b}{c \tau+d}, \frac{z}{c \tau+d}\right) & =(c \tau+d)^{k} e^{2 \pi i p \frac{c z^{2}}{c \tau+d}} \phi(\tau, z) \quad\left(\forall\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in S L_{2}(\mathbb{Z})\right) \\
\phi(\tau, z+\lambda \tau+\mu) & =e^{-2 \pi i p\left(\lambda^{2} \tau+2 \lambda z\right)} \phi(\tau, z) \quad\left(\forall(\lambda, \mu) \in \mathbb{Z}^{2}\right)
\end{aligned}
$$

and having a Fourier expansion of the form

$$
\begin{equation*}
\phi(\tau, z)=\sum_{\substack{n, r \in \mathbb{Z} \\ 4 p n-r^{2} \geq 0}} c(n, r) q^{n} \zeta^{r} \quad\left(q=e^{2 \pi i \tau}, \zeta=e^{2 \pi i z}\right) \tag{2.1}
\end{equation*}
$$

where the coefficient $c(n, r)$ depends only on $4 p n-r^{2}$ if k is even and p is prime ([1] Theorem 2.2). The holomorphy condition at infinity is that $c(n, r)$ vanishes unless $4 p n-r^{2} \geq 0$. If we relax the condition to merely requiring that $c(n, r)=0$ if $n<0$, we obtain the space of weak Jacobi forms, denoted $\tilde{J}_{k, p}$. Let $\tilde{J}_{*, *}$ be the ring of all weak Jacobi forms and $\tilde{J}_{e v, *}$ its even weight subring. Then $\tilde{J}_{e v, *}$ is the free
polynomial algebra over $M_{*}(\Gamma)$ on two generators $a=\tilde{\phi}_{-2,1}(\tau, z) \in \tilde{J}_{-2,1}$ and $b=\tilde{\phi}_{0,1}(\tau, z) \in \tilde{J}_{0,1}$ (see $[1, \S 9]$). Here $M_{*}(\Gamma)$ denotes the ring of all modular forms on Γ, which is generated by Eisenstein series $E_{4}(\tau)=$ $1+240 \sum_{n} \sigma_{3}(n) q^{n}$ and $E_{6}(\tau)=1-504 \sum_{n} \sigma_{5}(n) q^{n}$.

According to $[3, \S 8]$ there is a Jacobi form $\phi^{(2)} \in \tilde{J}_{2,2}$ uniquely characterized by the requirement that it has Fourier coefficients $c(n, r)=$ $B^{(2)}\left(8 n-r^{2}\right)$ which depend only on the discriminant $8 n-r^{2}$, with $B^{(2)}(0)=-2, B^{(2)}(-1)=1, B^{(2)}(d)=0$ for $d<-1$. In particular, the Fourier development of $\phi^{(2)}$ begins $\left(\zeta-2+\zeta^{-1}\right)+O(q)$. The representation of the form $\phi^{(2)}$ in terms of the generators a and b are $\phi^{(2)}=\frac{1}{12} a\left(E_{4} b-E_{6} a\right)$. Moreover Zagier's trace formula in higher level cases [3, Theorem 8] says that

$$
\begin{equation*}
\mathbf{t}^{(2)}(d)=-B^{(2)}(d) . \tag{2.2}
\end{equation*}
$$

Consider $\mathcal{D}_{\nu}: \tilde{J}_{k, m} \rightarrow M_{k+\nu}$ defined by
$\mathcal{D}_{0}(\phi)=\sum_{n}\left(\sum_{r} c(n, r)\right) q^{n}$
$\mathcal{D}_{2}(\phi)=\sum_{n}\left(\sum_{r}\left(k r^{2}-2 n m\right) c(n, r)\right) q^{n}$
$\mathcal{D}_{4}(\phi)=\sum_{n}\left(\sum_{r}\left((k+1)(k+2) r^{4}-12(k+1) r^{2} n m+12 n^{2} m^{2}\right) c(n, r)\right) q^{n}$
(see [1, §3]). Now we fix $k=2, m=2$ and $\phi=\phi^{(2)}$. Since $M_{2}=\{0\}$, $M_{4}=\mathbb{C} E_{4}$ and $M_{6}=\mathbb{C} E_{6}$, we obtain that $\mathcal{D}_{0}\left(\phi^{(2)}\right)=0, \mathcal{D}_{2}\left(\phi^{(2)}\right)=c \cdot E_{4}$ and $\mathcal{D}_{4}\left(\phi^{(2)}\right)=c^{\prime} \cdot E_{6}$ for some constants c and c^{\prime}. Thus we have

$$
\begin{gather*}
\mathcal{D}_{0}\left(\phi^{(2)}\right)=\sum_{n}\left(\sum_{\substack{r \in \mathbb{Z} \\
r^{2} \leq 8 n+1}} B^{(2)}\left(8 n-r^{2}\right)\right) q^{n}=0 \tag{2.3}\\
\mathcal{D}_{2}\left(\phi^{(2)}\right)=\sum_{n}\left(\sum_{\substack{r \in \mathbb{Z} \\
r^{2} \leq 8 n+1}}\left(2 r^{2}-4 n\right) B^{(2)}\left(8 n-r^{2}\right)\right) q^{n} \tag{2.4}\\
=c\left(1+240 \sum_{n} \sigma_{3}(n) q^{n}\right) \\
\mathcal{D}_{4}\left(\phi^{(2)}\right)=\sum_{n}\left(\sum_{\substack{r \in \mathbb{Z} \\
r^{2} \leq 8 n+1}}\left(12 r^{4}-72 r^{2} n+48 n^{2}\right) B^{(2)}\left(8 n-r^{2}\right)\right) q^{n} \tag{2.5}\\
=c^{\prime}\left(1-504 \sum_{n} \sigma_{5}(n) q^{n}\right)
\end{gather*}
$$

By comparing the constants terms in the above equations (2.4) and (2.5) we get $c=2 \cdot 2 \cdot B^{(2)}(-1)=4$ and $c^{\prime}=2 \cdot 12 \cdot B^{(2)}(-1)=24$. Now if we compare the coefficients of $q^{n}(n \geq 1)$ in (2.3), (2.4) and (2.5), then we have for all $n \geq 1$,

$$
\begin{equation*}
B^{(2)}(8 n)+2 \sum_{1 \leq r \leq \sqrt{8 n+1}} B^{(2)}\left(8 n-r^{2}\right)=0 \tag{2.6}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{1 \leq r \leq \sqrt{8 n+1}} r^{2} B^{(2)}\left(8 n-r^{2}\right)=240 \sigma_{3}(n) \text { by }(2.3) \text { and }(2.4) \tag{2.7}
\end{equation*}
$$

$$
\begin{equation*}
\sum_{1 \leq r \leq \sqrt{8 n+1}}\left(r^{4}-6 r^{2} n\right) B^{(2)}\left(8 n-r^{2}\right)=-504 \sigma_{5}(n) \tag{2.8}
\end{equation*}
$$

We can simplify the equation (2.8) by making use of (2.7), that is,

$$
\begin{equation*}
\sum_{1 \leq r \leq \sqrt{8 n+1}} r^{4} B^{(2)}\left(8 n-r^{2}\right)=-504 \sigma_{5}(n)+1440 n \sigma_{3}(n) \tag{2.9}
\end{equation*}
$$

And then if we subtract (2.7) from (2.9) we obtain

$$
\begin{align*}
& \sum_{2 \leq r \leq \sqrt{8 n+1}}\left(r^{4}-r^{2}\right) B^{(2)}\left(8 n-r^{2}\right) \tag{2.10}\\
&=-504 \sigma_{5}(n)+(1440 n-240) \sigma_{3}(n)
\end{align*}
$$

Now we can rewrite the equations (2.10), (2.7) and (2.6) as follows: for all $n \geq 1$,

$$
\begin{aligned}
& B^{(2)}(8 n-4)=(120 n-20) \sigma_{3}(n)-42 \sigma_{5}(n) \\
&-\sum_{3 \leq r \leq \sqrt{8 n+1}} \frac{r^{4}-r^{2}}{12} B^{(2)}\left(8 n-r^{2}\right) \\
& B^{(2)}(8 n-1)=240 \sigma_{3}(n)-\sum_{2 \leq r \leq \sqrt{8 n+1}} r^{2} B^{(2)}\left(8 n-r^{2}\right) \\
& B^{(2)}(8 n)=-2 \sum_{1 \leq r \leq \sqrt{8 n+1}} B^{(2)}\left(8 n-r^{2}\right) .
\end{aligned}
$$

Finally by (2.2) the theorem is proved.

References

[1] M. Eichler and D. Zagier, The Theory of Jacobi Forms, Progress in Math. 55, Bikhäuser-Verlag, Boston-Basel-Stuttgart, 1985.
[2] B. Gross and D. Zagier, On singular moduli, J. Reine Angew. Math., 355 (1985), 191-220.
[3] D. Zagier, Traces of singular moduli, Motives, polylogarithms and Hodge theory, Part I (Irvine, CA, 1998) (2002), Int. Press Lect. Ser., 3, I, Int. Press, Somerville, MA, 211-244.
*
Department of Mathematics
Seoul Women's University
Seoul 139-774, Republic of Korea
E-mail: chkim@swu.ac.kr

