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DEGREE OF NEARNESS

Seung On Lee* and Eun Pyo Lee**

Abstract. This paper is a revised version of [5]. In [5], we define
’nearness between two points’ in a topological space in many ways
and show that a continuous function preserves one-sided nearness.
We also show that a T1-space is characterized by one-sided nearness
exactly. In this paper, we introduce extremally disconnected spaces
and show that the new topology generated by the set of equivalence
classes as a base is extremally disconnected.

1. Pre-ordered set

The meaning of ‘a is sufficiently near to b’ is up to one’s mind case by
case. In general, a relation ’a is near to b’ is not symmetric. Hence it is
neither an equivalence relation nor a partial order. What is the meaning
of ‘near’ in mathematical sense? How can we define the relation with full
of meaning? Actually nearness between two persons is neither reflexive
nor transitive in general. But we want the relation ‘near’ in a topological
space is at least reflexive and transitive, i.e., a pre-order relation on a
space.

Definition 1.1. A pre-order or quasi-order on a nonempty set P is
a binary relation ‘�’ satisfying the following:

(1) x � x (reflexivity),
(2) x � y and y � z imply x � z (transitivity).

A set P equipped with a pre-order ‘�’ is said to be a pre-ordered set.

A pre-order relation ‘�’ on P gives rise to a relation ‘≺’ as

x ≺ y if and only if x � y and x 6= y.
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We write x 6� y if ‘x � y is false’.
Given a pre-order ‘�’ on P , one may define an equivalence relation

‘∼’ on P as

x ∼ y if and only if x � y and y � x.

Using the relation ‘∼’, it is possible to construct a partial order on
the quotient

P/ ∼= {[x]∼ | x ∈ P},
where [x]∼ = {y | x ∼ y}. In case, we can define [x]∼ ≤ [y]∼ on
P/ ∼ if and only if x � y. By the construction of ‘∼’, this definition
is independent from the chosen representatives and the corresponding
relation is indeed well-defined. It is readily verified that this yields a
partially ordered set, say poset.

For terminology not introduced in this paper, we refer to [2].

2. Degree of nearness in a topological space

What is the meaning of ‘near’? It may be up to one’s mind. Mathe-
matically, x ∈ clA, where clA is the closure of A, means that A is a set
of approximations of x in a topological space. That is, x is near to A
or a point a ∈ A is an approximation of x. Roughly speaking, x nears
to A. For example, A = {1, 1.4, 1.41, 1.414, · · · } is a set of approxima-
tions of

√
2 in the real line (R, U) with the real line topology, because√

2 ∈ clA = A ∪
√

2. The sequence < 1, 1.4, 1.41, 1.414, · · · > converges
to
√

2. But for any a ∈ A, a /∈ cl{
√

2} = {
√

2}.
Unfortunately, a ∈ cl{b} does not imply b ∈ cl{a} if the points are

in a non-symmetric topological space. If they are in a Hausdorff space,
then a = b if and only if a is near to b.

Roughly speaking, topology is the study of shape without distance.
Open sets in the real line with the usual topology are motivations of
topological spaces. Specifically, we know the meaning of ‘continuity’,
‘limits’ and ‘nearness’ on the real numbers. These concepts are all de-
fined rigorously in the realm of calculus on the real numbers.

A set is a neighborhood of each of its points if and only if it is open.
The everyday sense of the word ‘neighborhood’ is such that many

of the properties which involve the mathematical idea of neighborhood
appear as the mathematical expression of intuitive properties; the choice
of this term thus has the advantage of making the language more ex-
pressive. For this purpose, it is also permissible to use the expressions
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‘sufficiently near’ and ‘as near as we please’ in some statements. For
example([1]).

A set A is open if and only if for each a in A, all the points sufficiently
near a belong to A.

More generally, we shall say that a property holds for all points suf-
ficiently near a point x, if it holds at all points of some neighborhood of
x.

How does this notion of ‘open sets’ help us to characterize the concept
of ‘nearness’ on a space? It helps to think of open sets containing a
given point p as ‘neighborhoods’ of that point. If we have some idea of
‘nearness’ of points to each other, then every neighborhood of p contains
all points within a certain degree of ‘nearness’ to p. This is why we used
open balls in R2. Open balls give a definitive description of nearness to
p, and thus we can say an open set containing p is a ‘neighborhood’ of
p, since it always contains an open ball about p; it always contains all
points sufficiently near p. It might contain points ‘far’ from p as well,
but it definitely contains all points that are close to p, given a sufficiently
strict definition of ‘closeness’. In an indiscrete topology, all points are
‘near’.

In summary, when we define a topology of a space, we are implic-
itly giving the space a notion of continuity and limits. When we deal
with a familiar set like the real numbers, this notion of continuity and
limits can come directly from a notion of ‘distance’ between two points.
However, the notion of a topology is far more general and can be used
to characterize much more abstract spaces. Throughout this paper, a
topological space (X, T ) is defined on a nonempty set X.

Definition 2.1. Let (X, T ) be a topological space and x, y ∈ X.
Then we define the following:

(1) x is said to be one-sided near to y, denoted by x →1 y, if every
open set containing y contains x.

(2) x is said to be wholly near to y, denoted by x →w y, if there is an
open set containing x and y.

(3) x is said to be G-near to y, denoted by x →G y, if x = y or there
is an open set G(6= X) containing x and y.

Remark 2.2. (1) Clearly, the relation →1 is reflexive.
(2) Let β = {Nk | Nk = {1, 2, · · · , k}, k ∈ N} be a base for a topology

T on the set of all natural numbers N , then 1 →1 n for all n ∈ N , but
n 6→1 1 for any n ∈ N − {1}; hence →1 is not symmetric.
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(3) In an indiscrete space (X, I), where X has at least two elements,
every elements in X are one-sided near; hence →1 is not anti-symmetric.

(4) If x →1 y and y →1 z, then any open set G containing z contains
y, so G contains x; hence →1 is transitive.

In all, →1 is a pre-order, but neither an equivalence relation nor a
partial order.

Remark 2.3. (1) Clearly, the relation →w is reflexive.
(2) In an indiscrete space (X, I), where X has at least two elements,

every elements in X are wholly near. So the relation →w is symmetric
but not anti-symmetric.

(3) The relation →w is transitive.
Thus the relation →w is an equivalence relation but not a partial

order.

Remark 2.4. (1) Clearly, the relation →G is reflexive.
(2) Let X = {x, y, z} and T = {X, ∅, {x, y}, {y, z}, {y}}, then x →G y

and y →G z, but x 6→G z, so →G is not transitive.
(3) In an indiscrete space (X, I), where X has at least two elements,

no distinct elements in X are G-near.
By (2), the relation →G is not a pre-order.

Remark 2.5. Let (X, T ) be a topological space and A ⊆ X, then A
is open if and only if for any a ∈ A there is an open set G ⊆ A such that
every point which is G-near to a point a also belongs to A.

In the above remark, the set G is dependent to the set A. So the
definition of ’sufficiently nearness’ can not be free from the set A.

Proposition 2.6. Let (X, T ) be a topological space. Then the fol-
lowing are equivalent:

(1) (X, T ) is T1.
(2) x →1 y if and only if x = y.
(3) x 6→1 y and y 6→1 x for all x 6= y ∈ X.

Proof. Consider x →1 y if and only if y ∈ cl{x}. Since y ∈ cl{x} =
{x} in a T1-space, we get the result.

Proposition 2.7. Let (X, T ) be a topological space. Then (X, T )
is T0 if and only if x 6→1 y or y 6→1 x for all x 6= y ∈ X.

Proof. Let x 6= y ∈ X. Since (X, T ) is T0, there is an open set G in
X such that x ∈ G, y /∈ G or x /∈ G, y ∈ G. If x ∈ G and y /∈ G, then
y 6→1 x. If x /∈ G and y ∈ G, then x 6→1 y. So x 6→1 y or y 6→1 x.
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Conversely, let x 6= y ∈ X. Then x 6→1 y or y 6→1 x. If x 6→1 y, then
there is an open set G in X such that y ∈ G and x /∈ G. So (X, T ) is
T0.

Remark 2.8. (1) If {x} is an open set, then z 6→1 x for all z ∈
X − {x}.

(2) If z →1 x for all z ∈ X, then open set containing x is only X.
(3) [x]1 = {y | cl{y} = cl{x}}.
(4) Let (X, T ) be a topological space. Then {[x]1 | x ∈ X} and

{[x]W | x ∈ X} can be bases for some topologies on X.

Proposition 2.9. Let →p be a pre-order on a nonempty set X, then
{< x >p= {y | y →p x} | x ∈ X} is a base for some topology on X.

Proof. By reflexivity,
⋃
{< x >p| x ∈ X} = X. Let z ∈< x >p ∩ <

y >p. By transitivity, < z >p⊆< x >p ∩ < y >p.

Proposition 2.10. Let (X, T ), (Y, T ∗) be topological spaces and
f : (X, T ) → (Y, T ∗) be a function. Then for x0 ∈ X we have:

(1) If f is continuous at x0 and x →1 x0, then f(x) →1 f(x0).
(2) If f is an one-to-one open function and f(x) →1 f(y), then x →1 y.

Proof. (1) Let H be an open set containing f(x0). Since f is con-
tinuous at x0, there is an open set G containing x0 with G ⊆ f−1(H).
Since x →1 x0, x ∈ G. So f(x) ∈ f(G) ⊆ ff−1(H) ⊆ H and hence
f(x) →1 f(x0).

(2) Let G be an open set containing y. Then f(G) is open and f(G)
contains f(x). Since f is one-to-one, x ∈ f−1f(G) = G.

Remark 2.11. Consider the function 1R : (R, CC) → (R,U) is a se-
quentially continuous function from a cocountable space (R, CC) with
the set of all real numbers R into a usual space (R,U). Since the co-
countable space (R, CC) is a T1-space, x →1 x0 if and only if x = x0.
So x →1 x0 in (R, CC) implies f(x) →1 f(x0) in (R,U), but f is not
continuous at every point x ∈ R.

Now we define the concept of sufficiently nearness. A subset A of
(R,U) is open if and only if there is a positive number ε with (a− ε, a +
ε) ⊆ A for all a ∈ A. So every point b ∈ (a − ε, a + ε) is sufficiently
near(actually, ε near) to a.

Definition 2.12. Let (X, T ) be a topological space, A ⊆ X and
x, y ∈ A. Then x is said to be sufficiently near y in A, denoted by
x →s y, if there is an open set G(⊆ A) containing x and y.
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3. New topology generated by partitions

In this section we study the induced topology by a set of equivalence
classes as a base.

The term extremally disconnected was introduced by M.H. Stone([6])
as follows:

Definition 3.1. Let (X, T ) be a topological space. Then

(1) (X, T ) is said to be extremally disconnected if the closure of every
open subset of X is open in X or equivalently if the interior of
every closed subset of X is closed in X.

(2) A subset A of X is said to be regular-open if int(cl(A)) = A. A set
A is called regular-closed if cl(int(A)) = A.

(3) A subset A of X is said to be saturated if for any a ∈ A, [a] ⊆ A,
where [a] is the equivalence class of a.

Remark 3.2. Let (X, T ) be a topological space and x ∼ y if and
only if x →1 y and y →1 x.

We denoted [x] = {y | x ∼ y}. By Proposition 2.9, {[x] | x ∈ X} can
be a base for some topology T ∗ on X. We have the followings:

(1) [x] is not closed with respect to T , for X = {1, 2, 3} and T =
{X, ∅, {1}, {2}, {1, 2}}, [1] = {1} is not closed.

(2) [x] is not open with respect to T , for [3] = {3} is not open.
(3) A ∈ T ∗ if and only if A is saturated with respect to T . To show

it, let A ∈ T ∗ and x ∈ A. Then there is [x] with x ∈ [x] ⊆ A. Hence A
is saturated. Conversely, let x ∈ A, then x ∈ [x] ⊆ A for A is saturated.
Since [x] belongs to the base for T ∗, A ∈ T ∗.

(4) A is saturated if and only if Ac is saturated. If A is saturated,
then for any x ∈ Ac, x /∈ A Then [x] 6⊆ A. Thus [x] ⊆ Ac. (because,
if A is saturated and [x] 6⊆ Ac, then there is y ∈ [x] with y ∈ Ac. But
[x] = [y] ⊆ A . It’s a contradiction.)

(5) A is closed with respect to T if and only if A is saturated with
respect to ∼.

(6) (X, T ∗) is extremally disconnected since every open subset of X
is closed.

(7) Every open subset of (X, T ∗) is regular open and regular closed.



Degree of nearness 181

4. Nearness spaces

In 1974 H. Herrich invented nearness spaces. The concept of near-
ness spaces enables us to unify topological spaces. Now we introduce a
nearness structure([3]).

Let X be a set and ξ ⊆ P(P(X)), where P(P(X)) is the power set
of the power set of X. For A,B ⊆ P(X) and A,B ⊆ X, we use the
following notations.

(1) A ∨ B = {A ∪B | A ∈ A, B ∈ B}.
(2) A corefines B, denoted by A < B, if for each A ∈ A, there is B ∈ B

with B ⊆ A.
(3) A refines B, denoted by A ≺ B, if for each A ∈ A, there is B ∈ B

with A ⊆ B.

Definition 4.1. Let X be a set and ξ ⊆ P(P(X)). Then ξ is said
to be a nearness structure on X if it satisfies the following:
(N1) A < B ∈ ξ implies A ∈ ξ.
(N2)

⋂
A 6= ∅ implies A ∈ ξ.

(N3) ∅ 6= ξ 6= P(P(X)).
(N4) If A ∨ B ∈ ξ, then A ∈ ξ or B ∈ ξ.
(N5) ClξA = {ClξA | A ∈ A} ∈ ξ implies A ∈ ξ, where ClξA = {x ∈

X | {{x}, A} ∈ ξ}.
In case, the pair (X, ξ) is called a nearness space or shortly an N-space

and A is said to be near if A ∈ ξ.
ξ is said to be a quasi-nearness structure or shortly a Q-nearness

structure on X if ξ satisfies (N1), (N2), (N3) and (N4).

Given a nearness space (X, ξ), the operator Clξ is a closure operator
on X([3]). Hence there exists a topology associated with each nearness
space. This topology is denoted by τ(ξ). This topology is symmetric.
That is, if x ∈ cl{y}, then y ∈ cl{x}.
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