References
- 석희준, 2006, 효율적인 수치 모델링 기법 개발을 위한 ELLAM과 LEZOOMPC의 비교분석, 한국지하수토양환경학회지, 11(1), 37-44
- Baptista, A.M., Adams, E., and Stolzenbach, K., 1984, Eulerian-Lagrangian analysis of pollutant transport in shallow water, Rep. 296, R.M. Parsons Lab. for Water Resour. and Hydrodyn., Mass. Inst. of Technol., Cambridge
- Baptista, A.M., 1987, Solution of advection-dominated transport by Eulerian-Lagrangian methods using the backward methods of characteristics, Ph.D. thesis, Dep. of Civ. Eng., Mass. Inst. of Technol., Cambridge
- Bear, J., 1979, Hydraulics of groundwater, New York: McGraw-Hill, p. 567
- Bensabat, J., Zhou, Q., and Bear, J., 2000, An adaptive path linebased particle tracking algorithm for the Eulerian-Lagrangian method, Advances in Water Resources, 23(4), 383-397 https://doi.org/10.1016/S0309-1708(99)00025-1
- Celia, M.A., Russell, T.F., Herrera, I., and Ewing, R.E., 1990, An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation, Adv. Water Resour., 13, 187-206 https://doi.org/10.1016/0309-1708(90)90041-2
- Cheng, H.P., Cheng, J.R., and Yeh, G.T., 1996, A particle tracking technique for the Lagrangian Eulerian finite element method in multi-dimensions, International Journal for Numerical Methods in Engineering, 39, 1115-1136 https://doi.org/10.1002/(SICI)1097-0207(19960415)39:7<1115::AID-NME895>3.0.CO;2-4
- Douglas, J. and Russell, T.F., 1982, Numerical methods for convection-dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures, SIAM J. Numer. Anal., 19, 871-885 https://doi.org/10.1137/0719063
- Goode, D.J., 1990, Particle velocity interpolation in block-centered finite difference groundwater flow models, Water Resources Research, 26(5), 925-940
- Healy, R.W. and Russell, T.F., 1998, Solution of the advectiondispersion equation in two dimensions by a finite-volume Eulerian-Lagrangian localized adjoint method, Adv. Water Resour., 21(1), 11-26 https://doi.org/10.1016/S0309-1708(96)00033-4
- Konikow, L.F., Goode, D.J., and Hornberger, G.Z., 1996, A three-dimensional model of characteristics solute-transport model (MOC3D), U.S. Geological Survey, Water Resources Investigation, Report 96-4267, p. 99
- Leonard, B.P., 1988, Universal limiter for transient interpolation modeling of advective transport equations: The ULTIMATE conservative difference scheme, NASA Tech. Memo. 100916
- Leonard, B.P. and Mokhtari, S., 1990, Beyond first-order unwinding: The ULTRA-SHARP alternative for non-oscillatory steady-state simulation of convection, Int. J. Numer. Methods Eng., 30, 729-866 https://doi.org/10.1002/nme.1620300412
- Lu, N., 1994, A semianalytical method of path line computation for transient finite difference groundwater flow models, Water Resources Research, 30(8), 2449-2459 https://doi.org/10.1029/94WR01219
- Oliveira, A. and Baptista, A.M., 1998, On the role of tracking on Eulerian-Lgrangian solutions of the transport equation, Advances in Water Resources, 21(7), 539-554 https://doi.org/10.1016/S0309-1708(97)00022-5
- Pokrajac, D. and Lazic, R., 2002, An efficient algorithm for high accuracy particle tracking in finite elements, Advances in Water Resources, 25(4), 353-369 https://doi.org/10.1016/S0309-1708(02)00012-X
- Pollock, D.W., 1988, Semianalytical computation of path lines for finite-difference models, Ground Water, 26(6), 743-750 https://doi.org/10.1111/j.1745-6584.1988.tb00425.x
- Pollock, D.W., 1994, User's guide for MODPATH/MODPATHPLOT, Version 3: a particle tracking post-processing package for MODFLOW. The US Geological Survey finite-difference ground-water flow models, US Geological Survey Open-File Report 94-464, p. 249
- Russell, T.F., 1990, Eulerian-Lagrangian localized adjoint methods for advection-dominated problems. In Numerical Analysis, 1989, Pitman Res. Notes Math, Series, Vol. 228, ed. D.F. Griffiths & G.A. Watson. Longman Scientific and Technical, Harlow, U.K., 206-228
- Suk, H. and Yeh, G.T., 2007, 3D, three-phase flow simulations using the Lagrangian-Eulerian approach with adaptively zooming and peak/valley capturing scheme, Journal of Hydrologic Engineering, ASCE, 12(1), 14-32 https://doi.org/10.1061/(ASCE)1084-0699(2007)12:1(14)
- Suk, H. and Yeh, G.T., 2008, A multi-dimensional finite element particle tracking method for solving complex transient flow problem, in press Journal of Hydrologic Engineering
- Williamson, D.L. and Rasch, P.J., 1988, Two-dimensional semi-Lagrangian transport with shape preserving interpolation, Mon. Weather Rev., 117, 102-109 https://doi.org/10.1175/1520-0493(1989)117<0102:TDSLTW>2.0.CO;2
- Yeh, G.T., 1990, A Lagrangian-Eulerian method with zoomable hidden fine-mesh approach to solving advection-dispersion equations, Water Resour. Res., 26(6), 1133-1144 https://doi.org/10.1029/WR026i006p01133
- Yeh, G.T., Cheng, J.R., Gwo, J.P., Lin, H.C., Richards, D.R., and Martin, W.D., 1992, 3DFEMWATER/3DLEWASTE Numerical code for delineating wellhead protection areas in agricultural regions based on the assimilative capacity criterion, U.S. Environmental Protection Agency, EPA/600/R-92/223, p. 256
- Zheng, C., 1990, MT3D user's manual: a modular three-dimensional transport model for simulation of advection, dispersion, and chemical reactions of contaminants in groundwater systems, S.S. Papadopulos and Associates, p. 163