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TRANSIENT ANALYSIS OF THE GEO/GEO/1 QUEUE

Jeongsim Kim*

Abstract. This paper gives transient distributions for the number
of customers in the system in the Geo/Geo/1 queue for both the
early arrival and the late arrival models.

1. Introduction

There have been considerable interests in recent years in discrete-
time queueing systems. One of the reasons for this is that discrete-
time queues fit the slotted nature of telecommunication systems better
than the continuous-time counterparts. We refer the readers to the
books [1, 6] for more details on discrete-time queues. In discrete-time
queues, the time axis is divided into fixed-length intervals, called slots,
and customer arrivals and departures can happen simultaneously at a
slot boundary. Usually, there are two models in discrete-time: early
arrival model and late arrival model (see [1, 6]).

In this paper we consider the Geo/Geo/1 queue where customers
arrive at a single server facility according to a Bernoulli process and
have service times that are geometrically distributed. Mohanty and
Panny [2, 3] considered the Geo/Geo/1 queue and obtained the transient
solution for the number of customers in the system by two approaches:
analytic and geometric, which are different from the one presented in
this paper. In addition, Mohanty et al. [4] obtained in an alternative
manner the transient solution for the number of customers in the system
and the length of a busy period in the Geo/Geo/1 queue with the early
arrival model.
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This paper gives transient distributions for the number of customers
in the system in the Geo/Geo/1 queue for both the early arrival and the
late arrival models. Although we consider a model which is equivalent
to the one in [2, 3, 4], the method for the proof of result in this paper is
different from the one in [2, 3, 4].

2. Transient analysis in the early arrival model

We consider the Geo/Geo/1 queue with the early arrival model. Cus-
tomers arrive at a single facility according to a Bernoulli process and the
probability of an arrival during a slot is λ. Service times are geometri-
cally distributed and the probability of completion of a service during a
slot is µ.

Assume that the time axis is divided into fixed-length intervals. The
time axis is marked by 0, 1, . . . , n, . . .. In the early arrival model, cus-
tomer arrivals can occur only in (n, n+) and services can be completed
only in (n−, n).

Let X(t) denote the number of customers in the system at time t
and define Ln = X(n), n = 0, 1, 2, . . .. Then {Ln : n = 0, 1, . . .} is a
Markov chain with transition probability matrix P = (Pij)i,j≥0. The
(i, j)-component Pij of P is given by

Pij =


λ(1− µ) if j = i + 1, i ≥ 0,
µ(1− λ) if j = i− 1, i ≥ 1,
1− λ(1− µ) if j = i = 0,
λµ + (1− λ)(1− µ) if j = i, i ≥ 1,
0 otherwise.

Now, we define

Pij(n) = P(Ln = j|L0 = i), n = 0, 1, . . . ,

and give an explicit formula for this. First we consider a finite stochastic
matrix P (N) =

(
P

(N)
ij

)
0≤i,j≤N

, for any N ≥ 1, defined by

P
(N)
ij =



λ(1− µ) if j = i + 1, 0 ≤ i ≤ N − 1,
µ(1− λ) if j = i− 1, 1 ≤ i ≤ N,
1− λ(1− µ) if j = i = 0,
λµ + (1− λ)(1− µ) if j = i, 1 ≤ i ≤ N − 1,
1− µ(1− λ) if j = i = N,
0 otherwise.
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The following lemma gives an expression for P
(N)
ij (n) ≡

[(
P (N)

)n]
ij

.

The proof is carried out by the same method as in the proof of Theorem
1 on page 13 of [5].

Lemma 2.1. If λ 6= µ, then

P
(N)
ij (n)

=
1− λ(1−µ)

µ(1−λ)

1−
(

λ(1−µ)
µ(1−λ)

)N+1

(
λ(1− µ)
µ(1− λ)

)j

+
2

N + 1

(
λ(1− µ)
µ(1− λ)

) j−i
2

×
N∑

k=1

(
λµ + (1− λ)(1− µ) + 2

√
λµ(1− λ)(1− µ) cos( kπ

N+1)
)n

[
1− 2

√
λ(1−µ)
µ(1−λ) cos( kπ

N+1) + λ(1−µ)
µ(1−λ)

]
×

[
sin
(

ikπ

N + 1

)
−

√
λ(1− µ)
µ(1− λ)

sin
(

(i + 1)kπ

N + 1

)]

×

[
sin
(

jkπ

N + 1

)
−

√
λ(1− µ)
µ(1− λ)

sin
(

(j + 1)kπ

N + 1

)]
,

and if λ = µ, then

P
(N)
ij (n)

=
1

N + 1
+

1
N + 1

N∑
k=1

(
λ2 + (1− λ)2 + 2λ(1− λ) cos( kπ

N+1)
)n[

1− cos( kπ
N+1)

]
×
[
sin
(

ikπ

N + 1

)
− sin

(
(i + 1)kπ

N + 1

)]
×
[
sin
(

jkπ

N + 1

)
− sin

(
(j + 1)kπ

N + 1

)]
.

Theorem 2.2. The Pij(n) is given by

Pij(n) =

{
pij(n) +

(
1− λ(1−µ)

µ(1−λ)

)(
λ(1−µ)
µ(1−λ)

)j
if λ < µ,

pij(n) if λ ≥ µ,
(2.1)
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where

pij(n)

=
2

π

(
λ(1− µ)

µ(1− λ)

) j−i
2
∫ π

0

(
λµ + (1− λ)(1− µ) + 2

√
λµ(1− λ)(1− µ) cos y

)n

[
1− 2

√
λ(1−µ)
µ(1−λ)

cos y +
λ(1−µ)
µ(1−λ)

]
×
[
sin(iy)−

√
λ(1− µ)

µ(1− λ)
sin((i + 1)y)

][
sin(jy)−

√
λ(1− µ)

µ(1− λ)
sin((j + 1)y)

]
dy.(2.2)

Proof. Since P
(N)
ij = Pij for 0 ≤ i, j ≤ N−1 and both of the matrices

P (N) and P are tridiagonal, it can be shown by induction that

P
(N)
ij (n) = Pij(n) for 0 ≤ i, j ≤ N − n.

Hence, for any i, j, n = 0, 1, . . ., we have

Pij(n) = lim
N→∞

P
(N)
ij (n).

Combining this with Lemma 2.1, we have the desired assertion.

We now give an alternative expression for Pij(n).

Theorem 2.3. The Pij(n) is given by

Pij(n) =
(

λ(1− µ)
µ(1− λ)

) j−i
2

(
gn
j−i +

√
µ(1− λ)
λ(1− µ)

gn
i+j+1

)

+
(

1− λ(1− µ)
µ(1− λ)

) n−i−j∑
ν=2

(
λ(1− µ)
µ(1− λ)

) j−i−ν
2

gn
i+j+ν ,

where

gn
ν =

{ ∑n−|ν|
k=0

(n
k

)( n
|ν|+k

)
(λµ)n− |ν|

2 −k ((1− λ)(1− µ))
|ν|
2 +k if |ν| ≤ n,

0 if |ν| > n.
(2.3)

Proof. Since the integrand of (2.2) is an even function of y, we can
replace the

∫ π
0 by 1

2

∫ π
−π in (2.2). Making the change of variables z =

ey
√
−1 yields

pij(n) =
1

4π
√
−1

(
λ(1− µ)
µ(1− λ)

) j−i
2
∮
|z|=1

f(z)
z

dz,(2.4)
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where

f(z) =
−
(
λµ + (1− λ)(1− µ) +

√
λµ(1− λ)(1− µ)

(
z + 1

z

))n

[
1−

(
z + 1

z

)√λ(1−µ)
µ(1−λ) + λ(1−µ)

µ(1−λ)

]
×

[
(zi − z−i)−

√
λ(1− µ)
µ(1− λ)

(zi+1 − z−i−1)

]

×

[
(zj − z−j)−

√
λ(1− µ)
µ(1− λ)

(zj+1 − z−j−1)

]
.(2.5)

If λ < µ, then the integrand in (2.4) has two singular points at z = 0

and z =
√

λ(1−µ)
µ(1−λ) in the unit disk {z ∈ C : |z| ≤ 1}. Its residue at

z =
√

λ(1−µ)
µ(1−λ) is −

(
1− λ(1−µ)

µ(1−λ)

)(
λ(1−µ)
µ(1−λ)

) i+j+1
2 . If λ = µ, then z = 0 is

a singular point of the integrand in (2.4). If λ > µ, then the integrand

in (2.4) has two singular points at z = 0 and z =
√

µ(1−λ)
λ(1−µ) . Its residue

at z =
√

µ(1−λ)
λ(1−µ) is

(
1− λ(1−µ)

µ(1−λ)

)(
λ(1−µ)
µ(1−λ)

) i+j+1
2 . Let f0 be the constant

term in the Laurent expansion of f(z) at z = 0. Then its residue at
z = 0 is f0. By the residue theorem, we have that

pij(n) =


1
2

(
λ(1−µ)
µ(1−λ)

) j−i
2

f0 − 1
2

(
1− λ(1−µ)

µ(1−λ)

)(
λ(1−µ)
µ(1−λ)

)j
if λ < µ,

1
2

(
λ(1−µ)
µ(1−λ)

) j−i
2

f0 if λ = µ,

1
2

(
λ(1−µ)
µ(1−λ)

) j−i
2

f0 + 1
2

(
1− λ(1−µ)

µ(1−λ)

)(
λ(1−µ)
µ(1−λ)

)j
if λ > µ.

Substituting the above into (2.1) yields

Pij(n) = 1
2

(
λ(1−µ)
µ(1−λ)

) j−i
2

f0 + 1
2

(
1− λ(1−µ)

µ(1−λ)

)(
λ(1−µ)
µ(1−λ)

)j
.(2.6)
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Now we calculate f0. It follows from (2.5) that

f(z) =
−
(√

λµ +
√

(1− λ)(1− µ)z
)n (√

λµ +
√

(1− λ)(1− µ) 1
z

)n

(
1−

√
λ(1−µ)
µ(1−λ)

z
)(

1−
√

λ(1−µ)
µ(1−λ)

1
z

)
×
[
zi

(
1−

√
λ(1− µ)

µ(1− λ)
z

)
− z−i

(
1−

√
λ(1− µ)

µ(1− λ)

1

z

)]

×
[
zj

(
1−

√
λ(1− µ)

µ(1− λ)
z

)
− z−j

(
1−

√
λ(1− µ)

µ(1− λ)

1

z

)]

=

n∑
ν=−n

gn
ν zν

zi−j + zj−i − zi+j
1−

√
λ(1−µ)
µ(1−λ)

z

1−
√

λ(1−µ)
µ(1−λ)

1
z

− z−i−j
1−

√
λ(1−µ)
µ(1−λ)

1
z

1−
√

λ(1−µ)
µ(1−λ)

z

 ,

where gn
ν is the coefficient of zν in the Laurent expansion of(√
λµ +

√
(1− λ)(1− µ)z

)n
(√

λµ +
√

(1− λ)(1− µ)
1
z

)n

at z = 0. Hence, gn
ν satisfies (2.3). After some arithmetic, we get

f(z) =
n∑

ν=−n

gn
ν zν

{
zi−j + zj−i +

√
µ(1− λ)

λ(1− µ)
zi+j+1 +

√
λ(1− µ)

µ(1− λ)
z−i−j−1

−
(

1−
µ(1− λ)

λ(1− µ)

) ∞∑
ν=0

(
µ(1− λ)

λ(1− µ)

) ν
2

zi+j+ν+2

−
(

1−
λ(1− µ)

µ(1− λ)

) ∞∑
ν=0

(
λ(1− µ)

µ(1− λ)

) ν
2

z−i−j+ν

}
.

Therefore

f0 = gn
j−i + gn

i−j +

√
µ(1− λ)
λ(1− µ)

gn
−i−j−1 +

√
λ(1− µ)
µ(1− λ)

gn
i+j+1

−
(

1− µ(1− λ)
λ(1− µ)

) ∞∑
ν=0

(
µ(1− λ)
λ(1− µ)

) ν
2

gn
−i−j−ν−2

−
(

1− λ(1− µ)
µ(1− λ)

) ∞∑
ν=0

(
λ(1− µ)
µ(1− λ)

) ν
2

gn
i+j−ν .

Noting that gn
ν = gn

−ν for all n and ν and

∞∑
ν=−∞

(
λ(1− µ)
µ(1− λ)

) ν
2

gn
ν = 1,
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we have

f0 = 2gn
j−i +

(√
µ(1− λ)
λ(1− µ)

+

√
λ(1− µ)
µ(1− λ)

)
gn
i+j+1

−
(

1− µ(1− λ)
λ(1− µ)

) ∞∑
ν=0

(
µ(1− λ)
λ(1− µ)

) ν
2

gn
−i−j−ν−2

−
(

1− λ(1− µ)
µ(1− λ)

) ∞∑
ν=−∞

(
λ(1− µ)
µ(1− λ)

) ν
2

gn
i+j−ν

+
(

1− λ(1− µ)
µ(1− λ)

) −1∑
ν=−∞

(
λ(1− µ)
µ(1− λ)

) ν
2

gn
i+j−ν

= 2gn
j−i +

(√
µ(1− λ)
λ(1− µ)

+

√
λ(1− µ)
µ(1− λ)

)
gn
i+j+1

+
(

1− λ(1− µ)
µ(1− λ)

) ∞∑
ν=2

(
µ(1− λ)
λ(1− µ)

) ν
2

gn
−i−j−ν

−
(

1− λ(1− µ)
µ(1− λ)

)(
λ(1− µ)
µ(1− λ)

) i+j
2

+
(

1− λ(1− µ)
µ(1− λ)

) ∞∑
ν=1

(
µ(1− λ)
λ(1− µ)

) ν
2

gn
i+j+ν .

Therefore

f0 = 2gn
j−i −

(
1− λ(1− µ)

µ(1− λ)

)(
λ(1− µ)
µ(1− λ)

) i+j
2

+ 2

√
µ(1− λ)
λ(1− µ)

gn
i+j+1

+2
(

1− λ(1− µ)
µ(1− λ)

) ∞∑
ν=2

(
µ(1− λ)
λ(1− µ)

) ν
2

gn
i+j+ν .

Finally, substituting the above into (2.6) completes the proof.

3. Transient analysis in the late arrival model

In this section we deal with the late arrival model. In the late arrival
model, customer arrivals can occur only in (n−, n) and services can be
completed only in (n, n+). Therefore, arriving customers see a departing
customer about to leave, and the departing customer leaves behind the
customers that have just arrived.
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Let L̃n be the number of customers in the system at the end of the nth
slot, i.e., L̃n = X(n−). Then {L̃n : n = 0, 1, 2, . . .} is a Markov chain
with transition probability matrix P̃ =

(
P̃ij

)
i,j≥0

. The (i, j)-component

P̃ij of P̃ is given by

P̃ij =



λ if i = 0, j = 1,
λ(1− µ) if j = i + 1, i ≥ 1,
µ(1− λ) if j = i− 1, i ≥ 1,
1− λ if j = i = 0,
λµ + (1− λ)(1− µ) if j = i, i ≥ 1,
0 otherwise.

Now, we define

P̃ij(n) = P(L̃n = j|L̃0 = i), n = 0, 1, . . . ,

and give an explicit formula for this. Let us define two infinite matrices
L = (Lij) and U = (Uij) as follows:

Lij =


1 if i = j = 0,
1− µ if i = j ≥ 1,
µ if j = i− 1, i ≥ 1,
0 otherwise,

and

Uij =

 1− λ if i = j ≥ 0,
λ if j = i + 1, i ≥ 0,
0 otherwise.

Then we have

P = UL and P̃ = LU,

and so
P̃n = LPn−1U.

Since P̃ij(n) =
(
P̃n
)

ij
and Pij(n) = (Pn)ij , we have the following the-

orem.

Theorem 3.1. For n ≥ 1, P̃ij(n) is given by

P̃ij(n) =


(1− λ)P00(n− 1) if i = j = 0,
λP0,j−1(n− 1) + (1− λ)P0j(n− 1) if i = 0, j ≥ 1,
µ(1− λ)Pi−1,0(n− 1) + (1− µ)(1− λ)Pi0(n− 1) if i ≥ 1, j = 0,
µλPi−1,j−1(n− 1) + µ(1− λ)Pi−1,j(n− 1)

+(1− µ)λPi,j−1(n− 1) + (1− µ)(1− λ)Pij(n− 1) if i ≥ 1, j ≥ 1.
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[5] L. Takács, Introduction to the Theory of Queues, Greenwood Press, 1961.
[6] H. Takagi, Queueing Analysis: A Foundation of Performance Evaluation, vol.

3, Discrete-Time Systems, North-Holland, Amsterdam, 1993.

*
Department of Mathematics Education
Chungbuk National University
Cheongju 361-763, Republic of Korea
E-mail : jeongsimkim@chungbuk.ac.kr


