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ON THE STABILITY OF A CUBIC FUNCTIONAL
EQUATION

Kil-Woung Jun* and Yang-Hi Lee**

Abstract. In this paper, we prove the stability of the functional
equation

3∑
i=0

3Ci(−1)3−if(ix + y)− 3!f(x) = 0

in the sense of P. Găvruta on the punctured domain. Also, we
investigate the superstability of the functional equation.

1. Introduction

Throughout this paper, let V be a vector space, Y a Banach space,
and N the set of positive integers. Let n ∈ N. For a given mapping
f : V → Y , define a mapping Dnf : V × V → Y by

Dnf(x, y) :=
n∑

i=0

(−1)n−i
nCif(ix + y)− n!f(x)

for all x, y ∈ V , where nCi = n!
i!(n−i)! . A mapping f : V → Y is called

a monomial function of degree n ∈ N if f satisfies the functional equa-
tion Dnf(x, y) = 0. The functional equation Dnf(x, y) = 0 is called a
monomial functional equation of degree n ∈ N. In particular, a mapping
f : V → Y is called an additive (quadratic, cubic, respectively) map-
ping if f satisfies the functional equation D1f = 0 (D2f = 0, D3f = 0,
respectively). The functional equation D1f = 0 (D2f = 0, D3f = 0,
respectively) is called a Cauchy equation (quadratic functional equa-
tion, cubic functional equation, respectively). Let R be the set of real
numbers. The function f : R → R defined by f(x) = axn satisfies the
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functional equation Dnf = 0, where a is a real constant.
If we replace a given functional equation by a functional inequality,

when can one assert that the solutions of the inequality must be close
to the solutions of the given equation? If the answer is affirmative, we
would say that a given functional equation is stable.

In 1941, D.H. Hyers [6] proved the stability of Cauchy equation
D1f = 0 and in 1978, Th.M. Rassias [13] gave a significant generalization
of the Hyers’ result. Th.M. Rassias [14] during the 27th International
Symposium on Functional Equations, that took place in Bielsko-Biala,
Poland, in 1990, asked the question whether such a theorem can also be
proved for a more general setting. Z. Gadja [4] following Th.M. Rassias’s
approach [13] gave an affirmative solution to the question. Recently, P.
Găvruta [5] obtained a further generalization of Rassias’ theorem, the
so-called generalized Hyers-Ulam stability.

A stability problem for the quadratic functional equation D2f = 0
was proved by F. Skof [15] for a function f : X → W , where X is a
normed space and W is a Banach space. P.W. Cholewa [2] noticed that
the theorem of Skof is still true if the relevant domain X is replaced by
an Abelian group. S. Czerwik [3] proved the Hyers-Ulam-Rassias stabil-
ity of the quadratic functional equation.

J.C. Parnami, H.L. Vasudeva [11] and J.M. Rassias [12] investigated
the stability of the cubic functional equation D3f = 0 (see also [7]). A
stability problem for the functional equation Dnf = 0 was proved by
L.Cădariu and V. Radu [1] (see also [8], [10]).

In this paper, we prove the generalized Hyers-Ulam stability and the
superstability of the functional equation D3f = 0 in the sense of P.
Găvruta.

2. Stability of a cubic functional equation

Throughout this section, we denote by V and Y a normed space and
a Banach space, respectively. The authors [9] obtained the following
lemma.

Lemma 2.1. Let a be a positive real number and Φ : V \{0} → [0,∞)
a map. Suppose that the function f : V → Y satisfies the inequality∥∥∥∥f(x)− f(2x)

a

∥∥∥∥ ≤ Φ(x)
a

and f(0) = 0.
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(i) If
∑∞

l=0
1

al+1 Φ(2lx) < ∞ for all x ∈ V \{0}, then there exists a unique
function F : V → Y satisfying

‖f(x)− F (x)‖ ≤
∞∑
l=0

1
al+1

Φ(2lx)

for all x ∈ V \{0} and F is given by F (x) = limn→∞
f(2nx)

an for all x ∈ V .

(ii) If
∑∞

l=0 alΦ( x
2l+1 ) < ∞ for all x ∈ V \{0}, then there exists a unique

function F : V → Y satisfying

‖f(x)− F (x)‖ ≤
∞∑
l=0

alΦ(
x

2l+1
) < ∞

for all x ∈ X \ {0} and F is given by F (x) = limn→∞ anf( x
2n ) for all

x ∈ V .

Theorem 2.2. Let ϕ : V \ {0} × V \ {0} → [0,∞) be a mapping
satisfying the condition

∞∑
i=0

ϕ(2ix, 2iy)
8i+1

< ∞

for all x, y ∈ V \{0}. If a function f : V → Y satisfies the inequality

(2.1) ‖D3f(x, y)‖ ≤ ϕ(x, y)

for all x, y ∈ V \{0}, then there exists a unique cubic function C : V → Y
such that

(2.2) ‖f(x)− C(x)‖ ≤ Φ(x)

for all x ∈ V \{0}, where Φ is defined by

Φ(x) =
∞∑
i=0

ϕ(2ix,−2ix) + ϕ(−2ix, 2ix)
2 · 8i+1

+
ϕ(x,−x) + ϕ(−x, 2x)

12
.

In particular, C is given by

C(x) = lim
n→∞

f(2nx)− f(−2nx)
2 · 8n

for all x ∈ V .

Proof. From (2.1), we see that∥∥∥∥f(x)− f(−x)
2

− f(2x)− f(−2x)
16

∥∥∥∥ =
∥∥∥∥D3f(−x, x)−D3f(x,−x)

16

∥∥∥∥
≤ ϕ(x,−x) + ϕ(−x, x)

16
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for all x ∈ V \{0}. By Lemma 2.1, there exists

C(x) = lim
n→∞

f(2nx)− f(−2nx)
2 · 8n

for all x ∈ V satisfying

(2.3)
∥∥∥∥f(x)− f(−x)

2
− C(x)

∥∥∥∥ ≤ ∞∑
i=0

ϕ(2ix,−2ix) + ϕ(−2ix, 2ix)
2 · 8i+1

for all x ∈ V \ {0}. From the definition of C and the inequality∥∥∥∥D3f(2nx, 2ny)−D3f(−2nx,−2ny)
2 · 8n

∥∥∥∥ ≤ ϕ(2nx, 2ny) + ϕ(−2nx,−2ny)
2 · 8n

for all x, y ∈ V \ {0} and n ∈ N, we obtain

D3C(x, y) = 0,

C(4x)− 3C(3x) + 3C(2x)− 7C(x) = D3C(x, x) = 0

for all x, y ∈ V \ {0}. Using C(2x) = 8C(x), C(0) = 0 and C(−x) =
−C(x), we get C(3x) = 27C(x) for all x ∈ V \ {0}. Hence the equation

D3C(x, y) = 0

holds for x = 0 or y = 0 and C is a cubic function.
On the other hand, from (2.1), we have∥∥∥∥f(x) + f(−x)

2

∥∥∥∥ =
‖D3f(x,−x) + D3f(−x, 2x)‖

12

≤ ϕ(x,−x) + ϕ(−x, 2x)
12

(2.4)

for all x ∈ V \{0}. The inequality (2.2) follows from (2.3), (2.4) and the
inequality

‖f(x)− C(x)‖ ≤
∥∥∥∥f(x)− f(−x)

2
− C(x)

∥∥∥∥ +
∥∥∥∥f(x) + f(−x)

2

∥∥∥∥
for all x ∈ V \ {0}. Now, let C ′ be another cubic function satisfying
(2.2). Since C,C ′ : V → Y are cubic functions, we get

‖C(x)− C ′(x)‖=
1
8n
‖C(2nx)− C ′(2nx)‖

≤ 1
8n
‖f(2nx)− C(2nx)‖+

1
8n
‖f(2nx)− C ′(2nx)‖

≤ 2Φ(2nx)
8n
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for all x ∈ V \ {0} and n ∈ N. As n → ∞, we may conclude that
C(x) = C ′(x) for all x, y ∈ V .

Lemma 2.3. Let ϕ and f be mappings as in Theorem 2.2. Then there
exists a unique cubic function C : V → Y such that

(2.5) ‖f(x)− C(x)‖ ≤ Ψ(x)

for all x ∈ V \{0}, where Ψ is defined by

Ψ(x) =
∞∑
i=0

(ϕ(2ix,−2ix)
2 · 8i+1

+
7ϕ(−2ix, 2ix)

6 · 8i+1
+

ϕ(−2ix, 2i+1x)
12 · 8i

+
ϕ(2i+1x,−2i+1x)

12 · 8i+1
+

ϕ(−2i+1x, 2i+2x)
12 · 8i+1

)
.

In particular, C is given by C(x) = limn→∞
f(2nx)

8n for all x ∈ V .

Proof. From (2.1), we know∥∥∥f(x)− f(2x)
8

∥∥∥ =
∥∥∥D3f(−x, x)

16
− 7D3f(x,−x)

48
− D3f(−x, 2x)

12

+
D3f(2x,−2x)

96
+

D3f(−2x, 4x)
96

∥∥∥
≤ ϕ(−x, x)

16
+

7ϕ(x,−x)
48

+
ϕ(−x, 2x)

12

+
ϕ(2x,−2x) + ϕ(−2x, 4x)

96

for all x ∈ V \{0}. By Lemma 2.1 and the similar method used in
Theorem 2.2, we obtain this lemma.

Theorem 2.4. Let ϕ, f , Φ and Ψ be as in Theorem 2.2 and Lemma
2.3. Then there exists a unique cubic function C : V → Y such that

‖f(x)− C(x)‖ ≤ min{Ψ(x),Φ(x)}

for all x ∈ V \{0}. In particular, C is given by C(x) = limn→∞
f(2nx)

8n

for all x ∈ V .

Proof. Let C be a cubic function satisfying (2.2) and let C ′ be a cubic
function satisfying (2.5). Since C,C ′ : V → Y are cubic functions, we
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get

‖C(x)− C ′(x)‖=
1
8n
‖C(2nx)− C ′(2nx)‖

≤ 1
8n
‖f(2nx)− C(2nx)‖+

1
8n
‖f(2nx)− C ′(2nx)‖

≤ Φ(2nx) + Ψ(2nx)
8n

for all x ∈ V \ {0} and n ∈ N. As n → ∞, we may conclude that
C(x) = C ′(x) for all x, y ∈ V .

Theorem 2.5. Let ϕ : V \{0}× V \{0} → [0,∞) be a mapping satis-
fying the condition

∞∑
i=0

8iϕ(
x

2i+1
,

y

2i+1
) < ∞

for all x, y ∈ V \{0}. If a function f : V → Y satisfies the inequality
(2.1) for all x, y ∈ V \{0}, then there exists a unique cubic function
C : V → Y such that

‖f(x)− C(x)‖≤
∞∑
i=0

8i

2
[ϕ(

x

2i+1
,− x

2i+1
) + ϕ(− x

2i+1
,

x

2i+1
)]

+
ϕ(x,−x) + ϕ(−x, 2x)

12
for all x ∈ V \{0}. In particular, C is given by

C(x) = lim
n→∞

8nf(
x

2n
)

for all x ∈ V .

Proof. The proof is similar to those of Theorem 2.2, Lemma 2.3 and
Theorem 2.4.

Corollary 2.6. Let p 6= 3. If a function f : V → Y satisfies the
inequality

‖D3f(x, y)‖ ≤ ε(‖x‖p + ‖y‖p)
for all x, y ∈ V \{0}, then there exists a unique cubic function C : V → Y
such that

‖f(x)− C(x)‖ ≤
(

2
|8− 2p|

+
2p + 3

12

)
ε‖x‖p

for all x ∈ V \{0}.
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Corollary 2.7. If a function f : V → Y satisfies the inequality

‖D3f(x, y)‖ ≤ ε

for all x, y ∈ V \{0}, then there exists a unique cubic function C : V → Y
such that

‖f(x)− C(x)‖ ≤ 13
42

ε

for all x ∈ V \{0}.

3. Superstability of a cubic functional equation

Theorem 3.1. Let ϕ : V \ {0} × V \ {0} → [0,∞) be a mapping
satisfying the condition

(3.1) lim
(s,t)→(∞,∞)

ϕ(sx, ty) = 0

for all x, y ∈ V \{0} with (s, t) ∈ R×R. If a function f : V → Y satisfies
the inequality (2.1), then f is a cubic function.

Proof. Note that if ϕ : V \{0}×V \{0} → [0,∞) satisfies the condition
(3.1), then ϕ satisfies the condition in Theorem 2.2. By Theorem 2.2,
there exists a unique cubic function C : V → Y such that the inequality
(2.2) holds for all x ∈ V \ {0}. Hence the inequalities

3‖f(x)− C(x)‖≤ ‖D3f((k + 1)x,−kx)−D3C((k + 1)x,−kx)‖
+‖(f − C)((2k + 3)x)‖+ 3‖(f − C)((k + 2)x)‖
+‖(f − C)(−kx)‖+ 6‖(f − C)((k + 1)x)‖
≤ ϕ((k + 1)x,−kx) + Φ((2k + 3)x)
+3Φ((k + 2)x) + Φ(−kx) + 6Φ((k + 1)x),

3‖f(0)− C(0)‖≤ ‖D3f(kx,−kx)−D3C(kx,−kx)‖
+‖(f − C)(2kx)‖+ 9‖(f − C)(kx)‖+ ‖(f − C)(−kx)‖
≤ ϕ(kx,−kx) + Φ(2kx) + 9Φ(kx) + Φ(−kx)

hold for all x ∈ V \ {0} and k ∈ N, where Φ is defined as in Theorem
2.2. Taking as k →∞, we conclude f(x) = C(x) for all x ∈ V .
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