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STRONG CONVERGENCE THEOREM OF FIXED
POINT FOR RELATIVELY ASYMPTOTICALLY
NONEXPANSIVE MAPPINGS

XIAOLONG QIN*, SHIN MIN KANG**, AND SUN YOUNG CHO***

ABSTRACT. In this paper, we prove strong convergence theorems of
Halpern iteration for relatively asymptotically nonexpansive map-
pings in the framework of Banach spaces. Our results extend and
improve the recent ones announced by [C. Martinez-Yanes, H. K.
Xu, Strong convergence of the CQ method for fixed point iteration
processes, Nonlinear Anal. 64 (2006), 2400-2411], [X. Qin, Y. Su,
Strong convergence theorem for relatively nonexpansive mappings
in a Banach space, Nonlinear Anal. 67 (2007), 1958-1965] and
many others.

1. Introduction and preliminaries

Let E be a real Banach space, C' a nonempty closed convex subset
of B, and T : C' — C a mapping. A point x € C is a fized point of T
provided Tx = x. Denote by F(T) the set of fixed points of T'; that is,
FT)={zeC:Tx =z}

A iterative process is often used to approximate a fixed point of a
nonexpansive mapping, which is introduced by Halpern [9] and is defined
as follows: Take an initial guess zy € C arbitrarily and define {x,}
recursively by

(1.1) Tpt1 = tpxo + (1 —tp)Txn, n>0,
where {t,}>° is a sequence in the interval [0, 1].

In 1967, Halpern [9] first introduced this iteration scheme (1.1). He
pointed out that the conditions lim,, .., a,, = 0 and Zle ay, = 00 are

necessary in the sense that, if the iteration scheme (1.1) converges to
a fixed point of T, then these conditions must be satisfied. Ten years
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later, Lions [11] investigated the general case in Hilbert space under the
conditions

o0
(C1): lim o, =0, (C2): Zan =00 and (C3): lim w =0
n— 00 n—oo «
n=1 n+1

on the parameters. However, Lions’ conditions on the parameters were

more restrictive and did not include the natural candidate {a,} = %

In 1980, Reich [18] studied the iteration scheme (1.1) in the case when

F is uniformly smooth and o, = n~% with 0 < § < 1.

In 1992, Wittmann [22] studied the iteration scheme (1.1) in the case

when F is a Hilbert space and {ay,} satisfies

oo [e.e]
(C1): lim ap, =0, (C2): ap, = oo and (C4) : |an41 — ap| < oo.
In 1994, Reich [19] obtained a strong convergence of the iteration (1.1)
with two necessary and decreasing conditions on parameters for conver-
gence in the case when F is uniformly smooth with a weakly continuous
duality mapping. It is well know that process (1.1) is widely believed
to have slow convergence because the restriction of condition C'2. More-
over, Halpern [9] proved that the condition (C'1) and (C2) are indeed
necessary in the sense that if process (1.1) is strongly convergent for
all closed convex subsets C' of a Hilbert space H and all nonexpansive
mappings T on C, then the sequence {a,,} must satisfy the conditions
(C1) and (C2). (However, it is unknown whether these two conditions
are also sufficient; see [23] for more detail.) Thus to improve the rate of
convergence of process (1.1), one cannot rely only on the process itself.
Recently, Martinez-Yanes and Xu [14] adapted the iteration (1.1) in
Hilbert spaces as follows.
(1.2)

(xo € C arbitrarily chosen,

Yn = anxo + (1 — ap)Txy,

Cp={2€C:|lyn — 2> < |z — 2| + an(llzoll* + 2(zy — w0, 2))},
Qn={2€C: (xg—zn,xn, — 2) > 0},

Tnt1 = Po,n@.To-

To be more precisely, they proved the following theorem.

THEOREM 1.1. Let H be a real Hilbert space, C' a closed convex
subset of H and T': C'— C' a nonexpansive mapping such that F(T) #
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0. Assume that {ay,} C (0,1) is such that lim, . o, = 0. Then the
sequence {x,} defined by (1.2) converges strongly to Prryxo.

Very recently, Qin and Su [15] modified (1.1) in the framework of
Banach spaces to have strong convergence theorem for relatively nonex-
pansive mappings. More precisely, they proved the following theorem.

THEOREM 1.2. Let E be a uniformly convex and uniformly smooth
Banach space, let C' be a nonempty closed convex subset of E, let T :
C — C be a relatively nonexpansive mapping. Assume that {a, }7 is
a sequence in (0,1) such that lim,,_,o, o, = 0. Define a sequence {x,}
in C by the following algorithm

xg € C' chosen arbitrarily,

Yn = j_l(anjx() + (1 = an)jTzn),
Cn={veC:¢(v,yn) < and(v,z0) + (1 — an)d(v, ),
Qn={veC:(Jxg— Jan,x, —v) >0},

Tn+1 = le,ng, o,

where j is the single-valued duality mapping on E. If F(T) is nonempty,
then {z,} converges to p(r)o.

The purpose of this paper is in the framework of Banach spaces to
obtain a strong convergence theorems for relatively asymptotically non-
expansive mappings which was first introduced by Su and Qin [20]. We
obtain strong convergence theorems only under the condition (C1). Our
results also improve Martinez-Yanes and Xu [14] from Hilbert spaces to
Banach spaces and also extend Qin and Su [15] from relatively nonex-
pansive mappings to relatively asymptotically nonexpansive mappings.

Let E be a Banach space with dual E*. We denote by J the normal-
ized duality mapping from E to 2" defined by

(1.3) Jr={f" € E": (x, f) = ||lzI” = [l/**},
where (-,-) denotes the generalized duality pairing. It well known that
if £* is uniformly convex, then J is uniformly continuous on bounded
subsets of E. We shall denote the single-valued duality mapping by j.
As we all known that if C' is a nonempty closed convex subset of a
Hilbert space H and Pp : H — C' is the metric projection of H onto C,
then P¢ is nonexpansive. This fact actually characterizes Hilbert spaces
and consequently, it is not available in more general Banach spaces. In
this connection, Alber [1] recently introduced a generalized projection
operator IIo in a Banach space E which is an analogue of the metric
projection in Hilbert spaces.
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Next, we assume that E is a smooth Banach space. Consider the
functional defined as [1, 2] by

(1.4) $(a,y) = ||zl|* = 2(z, j () + |ylI*, Va,y e E.
Observe that, in a Hilbert space H, (1.4) reduces to
(b(.%',y) - Hx - yH27 Vr,y € H.

The generalized projection Il : E — C is a map that assigns to an
arbitrary point € E the minimum point of the functional ¢(x,y), that
is, Illox = T, where Z is the solution to the minimization problem

(1.5) o(Z,z) = {}28 o(y, ).

existence and uniqueness of the operator Il follow from the properties
of the functional ¢(z,y) and strict monotonicity of the mapping J (see,
for example, [3]). In Hilbert spaces, IIc = P¢. It is obvious from the
definition of function ¢ that

(16) (gl = llzl)? < ¢y, ) < (Iyll + ll2l)? Va,y € E.

REMARK 1.1. If E is a reflexsive strictly convex and smooth Banach
space, then for z,y € E, ¢(x,y) = 0 if and only if x = y. It is sufficient
to show that if ¢(z,y) = 0 then z = y. From (1.6), we have ||z| = ||y||.
This implies (x, jy) = ||z||*> = ||jy||*>. From the definitions of j, we have
jx = jy. That is, x = y; see [6, 21] for more details.

Let C be a closed convex subset of E, and let T' be a mapping from
C into itself. A point of p in C is said to be an asymptotic fixed point
of T [16] if C' contains a sequence {x,} which converges weakly to p
such that the strong lim, . || 7%, — 2| = 0. The set of asymptotic
fixed points of T will be denoted by F (T). A mapping T from C into
itself is called nonexpansive if | Tx — Ty|| < ||x — y|| for all z,y € C and
relatively nonexpansive [4, 5, 7] if F(T) = F(T) and ¢(p,Tz) < ¢(p, z)
for all x € C and p € F(T). A mapping T from C into itself is called
asymptotically nonexpansive [8] if there exists a sequence {k,, } of positive
real numbers with lim,,_,o k, = 1 and such that ||T"x —T"y| < k,||z —
y| for all n > 1 and x,y € C and relatively asymptotically nonexpansive
if F(T) = F(T) and ¢(p, T"z) < k2¢(p,z) for all z € C and p € F(T).

A Banach space E is said to be strictly convez if || 52| < 1 for all
x,y € Ewith ||z| = ||ly|]| = 1 and x # y. It is said to be uniformly convex
if limy, 00 || —yn|| = 0 for any two sequences {x,}, {y,} in E such that
[Znll = llyn] = 1 and lim,, oo [|22322 || = 1. Let U = {z € E : ||z|| = 1}
be the unit sphere of E. Then the Banach space E is said to be smooth
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provided lim;_, exists for each x,y € U. It is also said to be
uniformly smooth if the limit is attained uniformly for z,y € E. It is well
known that if F is uniformly smooth, then J is uniformly norm-to-norm
continuous on each bounded subset of E. A Banach space is said to have
the Kadec-Klee property if a sequence {z,} — = € E and ||z,| — ||z|l,
then x,, — x. It is known that if F is uniformly convex, then E has the
Kadec-Klee property; see [6, 21] for more details.

llz+tyll— ||l
0 t

We need the following lemmas for the proof of our main results.

LEMMA 1.3 ([10]). Let E be a uniformly convex and smooth Banach
space and let {z,}, {yn} be two sequences of E. If ¢(xy,y,) — 0 and
either {z,} or {yn} is bounded, then x, — y, — 0.

LEMMA 1.4 ([1]). Let C be a nonempty closed convex subset of a
smooth Banach space E and x € E. Then, xqg = llgx if and only if

(o —y,jx — jzo) >0, Vyel.

LEMMA 1.5 ([1]). Let E be a reflexive, strictly convex and smooth

Banach space, let C' be a nonempty closed convex subset of E and let
x € E. Then

o(y, Hex) + o(Ueozx, x) < ¢(y,x), Yye C.

LEMMA 1.6 ([12]). Let T be an asymptotically nonexpansive mapping
defined on a bounded closed convex subset C of a Hilbert space H.
Assume that {x,} is a sequence in C" with the properties x,, — p and

Tz, — xy — 0. Then p € F(T).

LEMMA 1.7 ([20]). Let E be a uniformly convex and uniformly smooth
Banach space, let C be a closed convex subset of E, and let T be a rel-
atively asymptotically nonexpansive mapping from C' into itself. If T is
continuous, then F(T) is closed and convex.

2. Main results

THEOREM 2.1. Let E be a uniformly convex and uniformly smooth
Banach space, let C' be a nonempty bounded closed convex subset of E
and let T : C' — C be a relatively asymptotically nonexpansive mapping
with sequence {ky} such that k, — 1 asn — oo and F(T) # (. Assume
that {a, }22, is sequence in [0, 1] such that lim, o o, = 0 and k2(1 —
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ap) < 1 for all n > 0. Define a sequence {x,} in C' by the following
algorithm:

'mo € C arbitrarily chosen,

Yn =7 Hanjzo + (1 — an)jT™zy),

(2.1) Cp={veC:o(,yn) < o(v,zy) + an, M},

Qn ={v € C: (jzo — jrn, vy —v) > 0},

Znt1 = lle,nQ, %o,

where M is an appropriate constant such that M > ¢(v, xg) for each
v € C' and j is the single-valued duality mapping on E. If T is uniformly
equi-continuous, then {x,} converges to q¢ = Ilpp)o.

Proof. First, we show that C,, and @), are closed and convex for each
n > 0. It is obvious that C,, is closed and @), is closed and convex for
each n > 0. Next, we prove that C,, is convex. Since

(v, yn) < ¢(v, Tn) + anM
is equivalent to
2(v, jon — jyn) < HanQ - Hyn||2 + an M,

we obtain that C), is convex. Next, we show that F(T) C C,, for all n.
Indeed, from condition k2(1 — a;,) < 1, we have

(P, yn)
= ¢(p, i (amjzo + (1 — an)jT"xy))
= [Ipll* = 2(p, anjzo + (1 — )T @n) + llanjzo + (1 — on)jT"zn)|>
< Ipll* = 20 (p, jzo) — 2(1 — an)(p, jT"2n)
+ anllzol® + (1 — an) | Tz, >
< and(p, x0) + (1 — o) p(p, T"wn)
< and(p, x0) + ki (1 — o) (p, o)
= ¢(p, ) — (1 = k(1 — an))d(p, &) + and(p, 70)
< ¢(p, on) + anM,

for each p € F(T'). So p € C,, for all n, which implies that F'(T') C C,,.
Next we show that

(2.2) F(T)C Qn, Yn>0.

We prove this by induction. For n = 0, we have F(T') C C' = Q. Assume
that F(T) C Q,. Since x,1 is the projection of z¢ onto C),, N Q,,, by
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Lemma 1.4 we have
<jx0_jxn+1’xn+l _Z> >0, VzeC,NQn.

As F(T) Cc Cy, N @y by the induction assumptions, the last inequality
holds, in particular, for all z € F(T'). From the definition of @Q,+1, we
have that F(T') C Qpn+1. Hence (2.2) holds for all n > 0. This implies
that {z,} is well defined. Since z,,11 = Ilg,nQ, x0 € @n, We have

¢($n’ ‘TO) < ¢($n+1,$0), Vn > 0.

Therefore {¢(zn,x0)} is nondecreasing. Since C' is bounded, we have
¢(zp, o) is bounded. Moreover, from (1.6), we have that {z, } is bounded.
Therefore, we obtain that the limit of {¢(x,,z¢)} exists. From Lemma
1.5, we have

H(Tni1,Tn) = ¢(@ny1, o, x0) < ¢(Tny1,20) — ¢(e, 0, T0)
— ¢($n+1a :L‘O) - ¢(l'na :EO)

for all n > 0. This implies that

(2'3) lim ¢<xn+17$n> =0.
n—oo

By using Lemma 1.3, one arrives at

(2.4) lim ||p41 — 2n|] = 0.
n—oo

Since z,41 = lg,ng,70 € C, and from the definition of C),, we also
have

(2.5) A(Tnt1,Yn) < Q(Tny1, Tn) + an M.

It follows from (2.3) and lim,, .~ o, = 0 that
lim (2,11, yn) = 0.
n—oo
From Lemma 1.3, one has
(2.6) lim ||zp41 — ynll = 0.
n—oo
Since J is uniformly norm-to-norm continuous on bounded sets, we have

(2'7) lim Hjanrl _jyn” = lim Hjanrl _]:L'nH =0.
n—o0 n—oo
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Noticing
Hjxn-‘rl _jynH
= [[jzn+1 — (anJzo + (1 — ) JT" 20 )|
= |lan(jrnt1 — jzo) + (1 — an)(jons1 — 3T ) ||
= H(l - an)(jxn-i-l - JTnxn) - an(ij - ]xn-‘rl)H
> (1= an)lljrntr — T 20|l — anllizo — joniall,
we have

”jxn-i-l - anl'nH < (”jxn-i-l - JynH + an”jx[} - ]mn-f—lH)

1—a,
From (2.7) and lim,,_,o ay, = 0, we obtain

lim ||jzp41 — jT" x| = 0.
n—oo

Since j~! is also uniformly norm-to-norm continuous on bounded sets,
we obtain
(2.8) lim ||zpy1 — T zy| = 0.

n—oo

On the other hand, we have
|Zn — T"@p|| < |Tnt1 — @nll + |01 — T"20|-

It follows from (2.4) and (2.8) that lim,_ . ||7"zy, — 25| = 0. Putting
L = sup{k, : n > 1} < oo, we obtain

[Ty — zp| < [Ty — TnJrlan + ”TnJrlxn - TnJrlxn—i—lH

F T g1 = o | + 21 — 2.
Since T is uniformly equi-continuous, we have
|Txy — zp]| — 0 asn — oo.

Finally, we prove that z, — q = Ilp)7ro. Assume that a {zy,,}
is a subsequence of {z,} such that {z,,} — ¢ € C. It follows that
qg= ﬁ(T) = F(T). Next we show that ¢ = Ilp)zo and convergence is
strong. Put ¢’ = Ilp(pyzo. From z,41 = lg,ng,20 and ¢ = F(T) C

Cpn N Qn, we have ¢(rp11,20) < (¢, 20). On the other hand, from
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weakly lower semi-continuity of the norm, we obtain
¢(q, w0) = llall* — 2(q, jwo) + [lzo?
< timinf(fon, |2 = (@, ja0) + 0]

< hm inf ¢(xm ’ .T())

71— 00
< limsup ¢(zy,, z0) < ¢(q', o).
1—00
It follows from definition of IIpr)zo, we obtain ¢ = Il p(7)xo. It follows
that

iglo ¢($m,l‘0) = qb(q', -TO) = ¢(Qa :EO)'

(2
Therefore, we obtain lim; .« ||Zn,|| = ||l¢||- Using the Kadec-Klee prop-
erty of E/, we obtain that {z,, } converges strongly to ¢ = Pp(1yz¢. Since
{xn,} is an arbitrarily weakly convergent sequence of {z,}, we can con-
clude that {z,} converges strongly to ¢ = II F(T)%0- This completes the
proof. O

As a application of Theorem 2.1, we have the following results.

COROLLARY 2.2. Let H be a Hilbert space, C a nonempty bounded
closed convex subset of E and T : C' — C an asymptotically nonex-
pansive mapping with the sequence {k,} such that k, — 1 as n — oco.
Assume that {a,}5°, is sequence in [0,1] such that lim, ,oc0pn = 0
and k2(1 — ;) — 1 < 0. Define a sequence {z,} in C by the following
algorithm:

xg € C  arbitrarily chosen,

Yn = anzo + (1 — an)T"xy,

Cn={ve€C:|lyn —v|]* < llzn —v[* + an M},
Qn={vel:{(xy—xy,z, —v) >0},

| Zn+1 = Ilc,nQn 2o,

where M is an appropriate constant such that M > ||xg — v||? for each
v € C. Then {x,} converges to some q = Il p(r)o.

Proof. From [8], we know F(T') # (. The key is to show that T is
asymptotically nonexpansive, then T is relatively asymptotically non-
expansive. Taking p € F (T'), we have that there exists a sequence
{zn} C C such that =, — p and lim, . ||z, — Tx,|| = 0. Observing
that T is asymptotically nonexpansive mapping and from Lemma 1.5,
we arrive at p € F(T). On the other hand, we have F(T) C F(T). In
Hilbert spaces, we know (1.4) reduces to ¢(z,y) = ||z — y||?, =,y € H.
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Therefore, T is also relatively asymptotically nonexpansive. It is easy
to obtain the desired conclusion from the proof of Theorem 2.1. This
completes the proof. O

REMARK 2.1. We improve Martinez-Yanes and Xu [14]’s results from
two distinct directions. One one hand, we extend the framework of
spaces from Hilbert spaces to Banach spaces. On the other hand, we
extend mappings from nonexpansive mappings to relatively asymptoti-
cally nonexpansive mappings. The results presented in this paper also
improve Qin and Su [15] from relatively nonexpansive mappings to rel-
atively asymptotically nonexpansive mappings in the framework of Ba-
nach spaces.
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