DOI QR코드

DOI QR Code

Transverse relaxation-optimized HCN experiment for tautomeric states of histidine sidechains

  • Schmidt, Holger (NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry) ;
  • Himmel, Sebastian (NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry) ;
  • Walter, Korvin F.A. (NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry) ;
  • Klaukien, Volker (NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry) ;
  • Funk, Michael (NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry) ;
  • Lee, Dong-Han (NMR-based Structural Biology, Max-Planck Institute for Biophysical Chemistry)
  • Published : 2008.12.20

Abstract

Function of protein is frequently related with tautomeric states of histidine sidechains. Thus, several NMR experiments were developed to determine the tautomeric states of histidines. However, poor sensitivity of these experiments caused by long duration of magnetization transfer periods is unavoidable. Here, we alleviate the sensitivity of HCN experiment for determining the tautomeric states of histidine residues using TROSY principle to suppress transverse relaxation of $^{13}C$ spins during long polarization transfer delays involving $^{13}C-^{15}N$ scalar couplings. In addition, this experiment was used to assign the sidechain resonances of histidines. These assignments can be used to follow the pH-titration of histidine sidechains.

Keywords

References

  1. J. G. Pelton, D. A. Torchia, N. D. Meadow, and S. Rosenman, Protein Sci. 2, 543-558 (1993).
  2. J. L. Sudmeier, E. L. Ash, U. L. Gunther, X. L. Luo, P. A. Bullock, and W. W. Bachovchin, J. Magn. Reson. Ser. B 113, 236-247 (1996). https://doi.org/10.1006/jmrb.1996.0182
  3. N. Shimba, H. Takahashi, M. Sakakura, I. Fujii, and I. Shimada, J. Am. Chem. Soc. 120, 10988-10989 (1998). https://doi.org/10.1021/ja982153g
  4. K. Pervushin, R. Riek, G. Wider, and K. Wüthrich, Proc. Nat. Aca. Sci. USA 94, 12366-12371 (1997). https://doi.org/10.1073/pnas.94.23.12366
  5. K. Pervushin, R. Riek, G. Wider, and K. Wüthrich, J. Am. Chem. Soc. 120, 6394-6400 (1998). https://doi.org/10.1021/ja980742g
  6. R. Riek, K. Pervushin, C. Fernandez, M. Kainosho, and K. Wüthrich, J. Am. Chem. Soc. 123, 658-664 (2001). https://doi.org/10.1021/ja9938276
  7. R. Fiala, J. Czernek, and V. Sklenar, J. Biomol. NMR 16, 291-302 (2000). https://doi.org/10.1023/A:1008388400601

Cited by

  1. Detection and Identification of Protein-Phosphorylation Sites in Histidines through HNP Correlation Patterns vol.49, pp.47, 2010, https://doi.org/10.1002/anie.201003965
  2. Nachweis und Identifizierung von Protein-Phosphorylierungen in Histidinen mithilfe von HNP-Korrelationen vol.122, pp.47, 2010, https://doi.org/10.1002/ange.201003965
  3. BEST and SOFAST experiments for resonance assignment of histidine and tyrosine side chains in 13C/15N labeled proteins pp.1573-5001, 2018, https://doi.org/10.1007/s10858-018-0216-z