DOI QR코드

DOI QR Code

High-Gain Fabry-Pérot Cavity Antenna with Planar Metamaterial Superstrate for Wibro Base Station Antennas

평판형 메타 물질로 구성된 상부 덮개를 갖는 와이브로 기지국용 고 이득 Fabry-Pérot 공진기 안테나

  • Kim, Dong-Ho (Electronics and Telecommunication Research Institute) ;
  • Choi, Jae-Ick (Electronics and Telecommunication Research Institute)
  • Published : 2008.12.31

Abstract

A new high-gain Fabry-$P{\acute{e}}rot$ cavity antenna for wireless broadband internet(Wibro) base station antennas, which is covered with metamaterial superstrate presenting simultaneous negative values of permittivity and permeability, is proposed. To facilitate the fabrication process using the printed circuit board(PCB) technology of today, a new planar-type metamaterial superstrate is designed, which shows negative and low positive values of a refractive index near the Wibro service frequency band. And the principle of antenna gain enhancement is analyzed from the two different view points of effectively low refractive index and of the Fabry-$P{\acute{e}}rot$ resonance condition. Single square patch antenna is used as a feeder. The separation distance is determined by considering the reflection phases of the metamaterial superstrate and the substrate satisfying Fabry-$P{\acute{e}}rot$ resonance condition, respectively. Comparison between the prediction and the measurement shows good agreement, which verifies the validity of our design approach.

음의 유전율 및 투자율을 갖도록 고안된 메타 물질을 안테나 상부 덮개(superstrate)로 사용한 와이브로(Wibro: wireless broadband internet) 기지국용 고 이득 Fabry-$P{\acute{e}}rot$ 공진기 안테나를 제안한다. 안테나의 상부 덮개로 사용된 새로운 메타 물질은 기존의 PCB 기술로 쉽게 제작 가능하도록 평판형으로 설계되었으며, 와이브로 서비스 주파수 대역 근방에서 음의 굴절률 및 '1'보다 작은 저 굴절률 값을 갖는다. 안테나의 이득 증대 효과를 유효매질 관점에서 추출된 메타 물질의 저 굴절률 특성과 Fabry-$P{\acute{e}}rot$ 공진기의 공진 조건이라는 두 가지 측면에서 분석하였다. 단일 정사각형 패치 안테나가 공진기 내부의 신호 피더로 사용되었으며, Fabry-$P{\acute{e}}rot$ 공진 조건을 충족시키기 위해 피더와 메타 물질 상부 덮개 사이의 이격 거리는 유전체 층을 포함한 접지면의 반사 위상과 메타 물질 상부 덮개의 반사 위상을 함께 고려하여 설정하였다. 시뮬레이션을 통한 예측 특성과 실험 결과가 잘 일치하였으며, 이를 통하여 본 논문에서 제시한 설계 방법이 타당함을 입증할 수 있었다.

Keywords

References

  1. V. G. Veselago, 'The electrodynamics of substances with simultaneously negative values of $\varepsilon$ and $\mu$', Soviet Phys. Usp., vol. 10, pp. 509-514, Jan.-Feb. 1968 https://doi.org/10.1070/PU1968v010n04ABEH003699
  2. J. B. Pendry, A. J. Holden, W. J. Stewart, and I. Youngs, 'Extremely low frequency plasmons in metallic mesostructures', Phys. Rev. Lett., vol. 76, no. 25, pp. 4773-4776, Jun. 1996 https://doi.org/10.1103/PhysRevLett.76.4773
  3. J. B. Pendry, A. J. Holden, D. J. Robbins, and W. J. Stewart, 'Magnetism from conductors and enhanced nonlinear phenomean', IEEE Trans. Microwave and Tech., vol. 47, no. 11, pp. 2075-2084, Nov. 1999 https://doi.org/10.1109/22.798002
  4. R. A. Shelby, D. R. Smith, and S. Schultz, 'Experimental verification of a negative index of refraction', Science, vol. 292, pp. 77-79, Apr. 2001 https://doi.org/10.1126/science.1058847
  5. H. Chen, L. Ran, J. Hungfu, X. Zhang, K. Chen, T. M. Grzegorczyk, and J. A. Kong, 'Left-handed materials composed of only S-shaped resonators', Phys. Rev. E 70, 057605, 2004
  6. L. Markley, G. V. Eleftheriades, 'A negative-refractive-index metamaterial for incident plane waves of arbitrary polarization', IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 28-32, 2007 https://doi.org/10.1109/LAWP.2007.890758
  7. X. Chen, T. M. Grzegorczyk, B. I. Wu, J. Pacheco, and J. A. Kong, 'Robust method to retrieve the constitutive effective parameters of metamaterials', Phys. Rev. E 70, 016608, 2004
  8. D. R. Smith, D. C. Vier, Th. Koschny, and C. M. Soukoulis, 'Electromagnetic parameter retrieval from inhomogeneous metamaterials', Phys. Rev. E 71, 036617, 2005
  9. S. Enoch, G. Tayeb, P. Sabourous, N. Guerin, and P. Vincent, 'A metamaterial for directive emiss- ion', Phys. Rev. Lett., vol. 89, no. 21, 213902, Nov. 2002
  10. Q. Wu, P. Pan, F. Y. Meng, L. W. Li, and J. Wu, 'A novel flat lens horn antenna designed based on zero refraction principle of metamaterials', Appl. Phys. A 87, pp. 151-156, 2007
  11. A. Ourir, A. D. Lustrac, and J. M. Lourtioz, 'All- metamaterial-based subwavelength cavities($\lambda$/60) for ultrathin directive antennas', Appl. Phys. Lett., vol. 88, 084103, 2006
  12. D. H. Lee, Y. J. Lee, J. Yeo, R. Mittra, and W. S. Park, 'Design of novel thin frequency selective surface superstrates for dual-band directivity enhancement', IET Microw. Antennas Propag., vol. 1, no. 1, pp. 248-254, 2007 https://doi.org/10.1049/iet-map:20050318
  13. N. Guerin, S. Enoch, G. Tayeb, P. Sabouroux, P. Vincent, and H. Legay, 'A metallic Fabry-Perot directive antenna', IEEE Trans. Antennas Propag., vol. 54, no. 1, pp. 220-224, Jan. 2006 https://doi.org/10.1109/TAP.2005.861578
  14. H. Boutayeb, T. A. Denidni, 'Metallic cylindrical EBG structures with defects: Directivity analysis and design optimization', IEEE Trans. Antennas Propag., vol. 55, no. 11, pp. 3356-3361, 2007 https://doi.org/10.1109/TAP.2007.908851
  15. Z. Liu, W. Zhang, D. Fu, Y. Gu, and Z. Ge, 'Broadband Fabry-Perot resonator printed antennas using FSS superstrate with disimilar size', Microw. Opt. Tech. Lett., vol. 50, no. 6, pp. 1623-1627, Jun. 2008 https://doi.org/10.1002/mop.23456
  16. E. Rodes, M. Diblanc, E. Arnaud, T. Monediere, and B. Jecko, 'Dual-band EBG resonator antenna using a single-layer FSS', IEEE Antennas Wireless Propag. Lett., vol. 6, pp. 368-371, 2007 https://doi.org/10.1109/LAWP.2007.902808
  17. A. Pirhadi, M. Hakkak, F. Keshmiri, and R. K. Bae, 'Design of compact dual band high directive electromagnetic bandgap(EBG) resonator antenna using artificial magnetic conductor', IEEE Trans. Antennas Propag., vol. 55, no. 6, pp. 1682-1690, Jun. 2007 https://doi.org/10.1109/TAP.2007.898598