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SonicStream: A Network Coding Based Live P2P Media
Streaming System With Rich User Experiences

Xiaogang Chen, Ning Ren, Xiaochen Zhang, Xin Wang, and Jin Zhao

Abstract: Recent studies have convinced that network coding can
improve the performance of live media streaming in terms of
startup delay, resilience to peer dynamics, as well as reduced band-
width cost on dedicated streaming servers. However, there still ex-
ist some strategy drawbacks and neglected problems which need
to be further researched. In addition to the commonly used eval-
uation parameters of the network and user experiences mentioned
above, we focus on additional key factors, playback lag and switch
lag, which have not been fully explored in previous work. In this
paper, we present SonicStream, a novel and fully implemented live
peer to peer (P2P) media streaming system with consideration of
rich user experiences, including startup delay, playback continu-
ity, playback lag, switch lag, etc. In pursuit of a further enhanced
user experience, we revise traditional peer selection/data schedul-
ing methods. Through a series of experimental evaluations and a
cautious comparison with the latest similar work R2, the superior
performance of SonicStream has been preliminarily verified.

Index Terms: Live media streaming, network coding, playback lag,
switch lag, user experience.

I. INTRODUCTION

Live media streaming has emerged to be immensely popu-
lar along with the entertainment demand, such as live sport
matches, from millions of Internet users. Recent studies have
shown that peer to peer (P2P) structure in media streaming sys-
tems could be efficient to solve original tough problems [1], [2]
due to its natural properties such as scalability, autonomy and
resilience to dynamics. According to the type of overlay struc-
tures, the work related to P2P media streaming systems could
be summarized into three categories: (1) Single-tree structure
[3]-15]; (2) multi-tree structure [6]-[8]; (3) Mesh based struc-
ture with the use of gossip-based protocol [9]-[11]. Due to the
user experience requirement for smooth playback, live media
streaming is typically sensitive to network congestion. Buffer-
ing is a typical mechanism to smooth out the congestion jit-
ter. However, buffering also introduces the possibility of user
experience degradation in playback lag among peers at the same
time.

Because of the instantaneity of live media streaming systems,
playback lag, which is defined as the time difference between
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playback time point of a client and the server, is very important.
However, only a few works focus on source-to-end delay, the
delay to receive the first media data block directly or indirectly
from the source. It only has partial influence on the playback
lag of a peer. The work [10] is the most encouraging work on
source-to-end delay, which adopts a “pull-push” hybrid schedul-
ing strategy and multi-tree overlay structure to improve the aver-
age source-to-end of the system. It uses the “pull” strategy as a
highly efficient bandwidth-aware multicast routing protocol and
the “push” strategy as the transmitting method, which is delay
and control overhead efficient. While AnySee [11] adopts a hop
measurement strategy to choose the nearest path to the content
server to minimize the source-to-end delay in a tree-based over-
lay structure.

Recently, to eliminate drawbacks of previous work, such as
scheduling difficulties, vulnerable to peer dynamics and net-
work congestion, etc., an innovative method, network coding,
has been considered in recent work. Network coding was first
proposed by Ahlswede et al. [12], the core idea of which is to
allow mediate peers in an overlay network to have extra capa-
bility of coding/decoding received data. Many literatures have
demonstrated that network coding could help the system achieve
a theoretically maximum throughput [13], [14], and some recent
work has persuasively brought this concept into P2P live media
streaming systems [15]-[18]. Due to the unavoidable increase
of data delay in pull-based designs, R? [19] adopted an innova-
tive random push method, which actively pushes encoded data
blocks to peers with inadequate resources based on their data
availability index.

As shown in R?, push strategy, which is delay and control
overhead efficient, can be introduced to mesh-based P2P live
media streaming systems because of the networking coding. To
our best knowledge, there is no existing work on optimization
of the playback lag over mesh based live media streaming sys-
tems. And the switch lag, which is measured as the time differ-
ence between the moment when a user issues request for another
channel and the moment the first frame could be viewed by the
user, is also missing in the previous studies. R? deals with the
case that the peer’s bandwidth merely meets the stream rate, but
in our work it shows that R? doesn’t work well under an en-
vironment with more bandwidth available by introducing more
control overhead. To reduce the playback lag, better peering
strategies and scheduling schemes, in addition to source-to-end
optimization, are also needed [20]. Peering strategy is mostly
responsible for the structure construction of P2P network, and
thus involves the source-to-end factor. Scheduling scheme is re-
sponsible for the data transfer in the P2P network. The faster it
is, the shorter the playback lag will be.

In this paper, we focus on rich user experiences, including
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startup delay, playback continuity, playback lag, switch lag, etc.,
in mesh-based P2P live media streaming by employing a dis-
tributed playback lag adaptive peering strategy and a push strat-
egy, rather than pull or pull-push hybrid strategy. This strategy
is encouraged by network coding and will significantly decrease
the scheduling complexity. The system is called SonicStream,
which means users can watch the channel very fast due to the
better playback lag and switch lag. In our previous work [21],
we have presented preliminary results of SonicStream. In this
paper, we designed and implemented a full-function real-world
P2P live streaming system with network coding and we analyzed
major metrics relative to the network and user experiences.

As described above, the main contribution of this paper could
be summarized into: (1) An actual P2P live media streaming
system is implemented (2) a method to provide rich user expe-
riences in a mesh-based environment is introduced, including a
better push strategy and peering strategy. With all the details we
take into consideration, the satisfactory of users could be more
acceptable.

The remainder of this paper is organized as follows: Section
II presents the implementation overview and describes how the
peering strategies and scheduling schemes mentioned above are
adopted and how they work in our system. Also, some special
details of the system are considered. Section III demonstrates
the performance evaluation of our system. Conclusion and pos-
sible future work are finally outlined in Section IV.

II. SCHEME DESIGN OF SONICSTREAM

A. Implementation Overview

Our system is a live media streaming system based on a data-
driven unstructured overlay. The media source is referred to as
the streaming server and the others (receivers) as peers. The term
“peer” is referred to each of the receivers. The system consists
of three major components:

1. Content server: The bootstrapping and content publisher
peer of the system;

2. Access server: Access portal of the system, which returns
a channel list to peers;

3. Peer: The core component executed on each peer, gathering
most functions of the system.

As discussed above, the main object of the paper is to provide
rich user experiences, including startup delay, playback conti-
nuity, playback lag, switch lag, etc. To our best knowledge, this
is the pretty comprehensive optimization of the metrics. Here,
the architecture of the peer is presented, showing how it is con-
structed and what has been done to achieve the goal described
above.

The software architecture of a peer could be best depicted in
Fig. 1.

A.1 Overlay Management Module

This module is basically responsible for peer discovery and
overlay structure construction and maintenance. As illustrated
in Fig. 1, the overlay module consists of a member management
module and a partner management module.
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Fig. 1. Peer structure of the system [21].

Member management module maintains the member list,
which is the current existing peers of a channel. It uses a gossip-
like protocol to do this.

The partner management module maintains the partner list of
a peer. Peers periodically exchange neighborhood information,
such as IP message, data availability, etc., within their own part-
ner clusters.

Media content will be actually exchanged among peers in the
same partnership cluster. The initial selection of partners for
each peer, therefore, could have great influence on the playback
performance, such as startup delay, playback lag, etc. To guar-
antee an acceptable playback lag, the system is designed as fol-
lows:

When a peer joins a channel, the bootstrapping peer (i.e., con-
tent server) will return the number of the segment it is playing
and the current capacity of the system. The term capacity is the
total number of the peers in the channel. Let’s assume that d is
the maximum number of father neighbors, « is the maximum
number of child neighbors, c is the capacity of the system at that
time and s is the maximum number of the peers that the server
can serve (3 in the case of SonicStream). Note that u is greater
than d for the system to work well. So the capacity of the system
can be calculated as [21]:

uy(h—1
s (]
d—u
After the peer received the message, it will run a function to set
its start point h segment after it. And when u is not equal to d,
h is calculated as:

M

—d
h = log, (L“ )> i1 @
d su
When w is equal to d, h is calculated as ¢ divided by s:
h="C. 3)
s

When the start point is set, a peer will choose partners from
the member list that was established. Peers will only accept this
requirement when their buffer maps are overlapped with each
other.

It may be learned from EQ2 that the peer won’t increase its
start point h unless the former peers exhaust all the bandwidth
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available. So as a preferred implementation, the system can pro-
vide better playback lag than what the random peering strategy
could do.

Peer updates priority of its neighbors according to the result
of data scheduling. In addition, peers deliver quit message to
the peers in their member list when they are ready to leave, on
receiving such message, a peer would delete this peer from its
member list automatically and flood the message. In abnormal
situations such as power-off, the updating function would guar-
antee that disappearing peers be deleted from system in no more
than P interval. Also, in this way, the Content server could main-
tain the system capacity to be a respective explicit value.

A.2 Data Scheduling Algorithm

The system adopts a random push algorithm for data schedul-
ing similar to R? [19]. The difference is that a peer pushes data
blocks to its partners only when it has received all blocks of a
certain segment, which will save great amount of coding com-
plexity with a delay of one segment duration. In addition, a
peer only sends limited number of blocks to its partners to avoid
unacceptable data overhead in the experiment environment. Un-
like R?, where the buffer map is updated on demand, the buffer
map is exchanged periodically to avoid unacceptable data over-
head. Also, the schedule process runs periodically to guaran-
tee timely scheduling of media content, and the scheduling fre-
quency has been carefully chosen to decrease the consumption
of resources, which will be discussed in Section III. To achieve
a better user experience, following improvements of scheduling
algorithm have been made in the system:

First, after a synchronized comparison of local buffer-map
and fresh buffer-map of each partner, a positive offset will be
returned representing the start point of their overlapping part,
base on which, data blocks could be orderly scheduled.

Second, to avoid redundant data dissemination, the number of
data blocks each peer delivers to its neighbors is confined. After
sequential comparison, the number of blocks each peer should
send to its partner each time is set to be the ratio of the partner’s
residual demanding block number in a certain segment and the
maximum partner number predefined. So that all the neighbors
could help the peer get sufficient blocks in a collaborative but
restrictive manner.

A.3 Network Coding and Decoding Modules

As illustrated in Fig. 1, network coding and decoding mod-
ules are employed in the system, shown as encoder and decoder
in Figure 1 respectively. The network coding is adopted to en-
able the scheduling algorithm, push strategy work well, by mak-
ing streaming packets scheduled faster. This will cause better
playback lag.

Network coding/decoding modules adopt a typical random
linear network coding method and a traditional Gauss elimina-
tion method, respectively. The network coding finite field is 28,
which is enough for the relevancy consideration.

A.4 Other Technical Solutions

Windows media encoder is used to generate successive ASF
streaming packets (advanced streaming format, a media format
defined by Microsoft, suitable to be played over network).

Access server

Fig. 2. Operational overview of the system.

A program module is designed for sending stream to windows
media player based on streaming http protocol. This functional-
ity is performed by player management module (shown in Fig.
1). In this way, the coupling problem between the module and
player is simplified, which is different from other Live P2P me-
dia streaming systems with self-designed player.

B. Operational Overview

The system is generally implemented according to the follow-
ing descriptions:

Original media content (generated by windows media en-
coder in the case of SonicStream) is first divided into several
data segments, each segment is labeled with a sequence number
and further divided into several blocks (we call the number of
blocks contained in a segment as segment size).

The operational flow is shown in Fig. 2.

The steps of operation may be described as:

1. Content Server contacts with Access Server and registers
its information on Access Server.

Peer connects to the access server for the channel list.
The access server will return a channel list to the peer.
. The peer chooses a channel,

Return a channel capacity to the peer.

. Peer starts peering function and streaming function.

The peering function can be described as follows:

The peer will run a gossip-like protocol to establish and main-
tain a member (peers that view the same channel) list for each
peer based on a random chosen manner.

The new peer will choose its partner from the member list.

After the confirmation of each peer’s partner list using a part-
ner selection method described above, media data could be flex-
ibly exchanged among peers in the same partnership based on
each peer’s data availability index (referred to as buffer map in
the case of SonicStream). The streaming function can be de-
scribed as two parts, receiving and sending. The receiving and
sending parts are shown in Figs. 3 and 4, respectively.

As discussed above, network coding/decoding is deployed on
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Fig. 3. Streaming flow part 1 (receiving flow).

all peers in the system for data dissemination, adopting a typical
random linear network coding method and a traditional Gauss
elimination method. A random push mechanism is adopted for
data scheduling process inspired by R? [19]. A peer will not
start to play until its playback buffer is fulfilled.

III. EXPERIMENT AND PERFORMANCE
EVALUATION

Our testing scale involves a group size of 25 computers with
similar deployment and performance in the same LAN. The net-
work is constructed in a typical “star” structure. The resource
of those computers could be fully used with an approximate up-
load capacity of 100Mb/second (with proper restriction of such
capacity, the improvement of our work compared to previous
ones could be maximally observed). We run 8§ peers on each
computer and the bandwidth available for each peer is 10 Mbps.
Each peer acts as a single fully functional node in the system.

As a real implementation and for better performance, enor-
mous experiments have been done to define the proper values
for various parameters. Because of the paper restriction, how-
ever, only segment size will be illustrated in figures separately
to show that how it is set. The other parameters are discussed
along with the other metrics and given as follows:

As described above, original media content (generated by
windows media encoder in the case of SonicStream) is first di-
vided into several data segments, each segment is labeled with
a sequence number and further divided into 32 blocks, i.e. the
segment size is 32 and each block is 2 KB, i.e. the block size
is 2 KB. unless specified, the maximum number of father neigh-
bors (which ones send streaming packets to the peer) is D (3 in
the case of SonicStream), the maximum number of child neigh-
bors (which ones the peer sends streaming packets to) is U (6 in
the case of SonicStream), the buffer size is 5 seconds (contain-
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ing 5 seconds data for playback at most), the streaming rate is
284 Kbps (CBR) and the server serves only 3 peers.

To evaluate the performance of our system, we mainly focus
on the following metrics:

1. Startup delay: Measured by the period of time lasting from
the click of a certain channel to the first frame which could
be actually viewed by the user.

2. Playback continuity: Representing the number of blocks
that arrive before their playback deadlines over the total
number of blocks.

3. Playback lag: (Synchronization with content server): Mea-
sured by the difference of the current playback segment be-
tween each peer and content server.

4. Bandwidth overhead: Measured as the total amount of con-
trol overhead (such as BM exchange) and wasted data (data
packets discarded due to correlation or excess of existing
packets).

5. Switch lag: the period of time consumed lasting from the
click of another channel, which is either the same as or
different from the former channel, to the first frame which
could be actually viewed by the user.

Also, to check the system works better, R? system and a pull
based P2P media streaming system adopting the same overlay
management policy without network coding (illustrated as P2P
Live in the figures) are constructed.

Test results and analysis.

A. Segment Size

Segment size is a network coding parameter that can affect the
performance of the system. By way of example, when segment
size is 1, the network coding system degrades to P2P system.
Then the push strategy can’t work for causing too much redun-
dancy data. On the other hand, too large segment size will lead
to increased network coding/decoding time, and the efficiency
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Fig. 5. Segment size.

of the push strategy will be counteracted. The result of the ex-
periment is shown in Fig. 5.

As illustrated in Fig. 5, the best system performance appears
at 32 blocks per segment, showing that in live streaming sys-
tems, too small segment size won’t take good advantage of the
benefit of network coding, while too large segment size will take
too long time to decode so that it counteracts the benefit of net-
work coding.

B. Playback Lag

We test our playback lag optimization policy with a compari-
son of SonicStream, R? and P2P Live. The result is shown below
in Fig. 6.

The playback lag is calculated as the average playback lag of
all peers of the system. That is the sum of playback lags of all
peers divided by the system capacity.

The result shows that SonicStream can perform better on
playback lag in compare with R2. The playback lag is pretty
high because the content server can only serve 3 peers. As the
system capacity grows, the average playback lag gets higher be-
cause of the limitation of the service ability of the server. Notice
that the difference between R? and SonicStream gets larger as
the capacity grows. This is because as the system gets larger,
the possibility to choose a partner with higher playback lag gets
higher.

It also shows that the push policy has lower transmitting de-
lay from the comparison with P2P Live, Notice that the aver-
age playback lag is higher than the theoretical value (generally
equals the sum of buffer size, h, and source-to-end delay) be-
cause of the start time of the player.

A possible drawback of synchronized playback adopted by
R? is that, the time between the occurrence of a live event in
the stream and its playback is the same across the board in all
peers in the entire channel. This is harmful [19]. With the over-
lay management policy, SonicStream can easily avoid this situ-
ation.

28
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Fig. 6. Average playback lag of different systems [21].
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C. Startup Delay and Playback Continuity

In a real-world P2P network scenario, peers are always fac-
ing a challenging dynamical atmosphere which involves ar-
rival/departure behaviors with high frequency. We run 200
copies of our system on 25 computers to simulate 200 peers.
To emulate such a volatile situation, a dynamical simulation is
conducted based on the following assumption: At the start, peers
arrive as a Poisson distribution, with the strength of 10. When
the on-line peers reach a number of 100, a Poisson departure of
peers is additionally introduced with strength of 5. A Poisson
distribution control module is implemented on access server.

As startup delay and playback continuity are key factors
which could affect user experience, we intend to evaluate how
the system performs in terms of these two parameters. Experi-
mental results are shown in Fig. 7.

The result shows that SonicStream and R? perform better
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than P2P Live because of network coding and the different
scheduling policy. And the startup delay is also improved due to
the introduction of scheduling algorithm.

D. Bandwidth Overhead

AS defined above, bandwidth overhead includes control over-
head and data bandwidth overhead. The internal time of every
partner message exchanging is referred to as P. The internal
time of every scheduling is referred to as 7" and G represents the
generation size. The following equation should hold:

T/IG<PLT. 4)
The exchange frequency of buffer-map among the same part-
ner cluster should be cautiously prescribed, since too long in-
terval would cause delayed implication of buffer-map updating
to partners and thus lead to uncontrolled dissemination of data
blocks, ending as huge amount of overhead; and too short inter-
val would also be devastating due to the unsustainable overhead
of extra bandwidth consumption. To achieve an optimum sys-
tem performance, we should make a trade-off on this parameter.

In R, this problem was partially solved by no longer send-
ing buffer-maps periodically, instead, they are sent only when
their status get changed, this solution, however, is only suitable
in narrow-bandwidth situations when upload bandwidth barely
exceed the stream rate of playback. In our system, this method
could cause much overhead since large amount of data blocks
would be pushed to saturated peers before it is actually notified
by updated buffer-map to stop. In the experiment we set T to be
50 milliseconds, the statistic overhead result is present in Fig. 8.

Result shows that R?, as designed for low bandwidth net-
work, causes more data overhead in the environment with more
bandwidth available. Because pull strategy can utilize band-
width efficiently, all the data overhead is caused by control over-
head. So P2P Live has a contrary tendency of data overhead
changing with the other two. We also can see that even Sonic-
Stream causes about 6% data overhead. We argue that using a
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mesh-based push algorithm in an environment with more band-
width available, as a real implementation, there is always coop-
erating problem between threads, so the data overhead always
exists.

E. Switch Lag

In a real streaming system, fast channel switch is necessary
for a user. In the former studies, this problem is hardly involved.
As a real implementation, the switch lag is implemented as a
key feature of our system, and also carefully tested. The result
is shown in Fig. 9.

Notice that our system performs better than R? in various
buffer size settings. Also, P2P Live works better than Sonic-
Stream when the buffer size is set to 5 seconds. That’s because
SonicStream waits a small period of time for better playback
continuity, which can be seen in Fig. 7.

As is illustrated, switch lag is greater than the startup delay,
because a peer will quit from the former channel, which will
take some time, and after this, the peer will start the steps of
joining a channel. This explains the greater switch lag.

The result also tells that our system only performs a little bet-
ter than R2, that is because R? wastes more bandwidth and this
compensates the strategy flaw.

IV. CONCLUSION AND FUTURE WORK

The objective of this paper is to present a rich and better
user experiences design and implementation of a P2P live media
streaming system combining random push algorithm and ran-
dom linear network coding inspired by R?. Note that since our
system deals with the playback lag and other user experience
metrics, and when comparing to R?, it will perform no better
than R? for the scene of a flood of peers joining the system si-
multaneocusly.

In particular, the contribution of this paper involves of: (1)
Implementing an actual P2P live media streaming system, thus
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making it feasible and promising in realistic application scenar-
ios. (2) Introducing a method to provide rich and better user
experiences, including startup delay, playback continuity, play-
back lag, switch lag, etc., in a mesh-based environment, includ-
ing overlay management strategy and scheduling strategy. (3)
Showing that our system enjoys great advantage with compar-
ison of R?, in terms of startup delay, playback continuity, and
playback lag, through strict and meticulous experiments. With
all the details we take into consideration, the satisfactory of
users could be more acceptable. A user can enjoy better play-
back lag and switch lag in our system. Due to limitation of our
work, there still exist problems which have not been deeply re-
searched (such as the heterogeneity of peer bandwidth, mo

efficient buffer management strategy for better playback del:

[20], how network coding will work in high definition systemn

etc.). Innovative solutions to such problems should be propos:

in the future as an extension to work mentioned in this paper.
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