Special English Edition of Journal of KIISC, Vol. 18 No.6 (B), December 2008

Introduction to Leakage-Resilient Authenticated Key Exchange
Protocols and Their Applications
(Invited paper)

Hideki Imai®, SeongHan Shin”, and Kazukuni Kobard®
Chuo University, Bunkyo-ku, Tokyo, Japan

Abstract

Secure channels, indispensable to many applications, can be established by using an authenticated key exchange (AKE)
protocol where the involving parties authenticate one another and then share authenticated session keys over insecure
networks, In this paper, we introduce a new type of AKE protocols that are especially designed to minimize the damages
caused by leakages of stored secrets. Such protocols are called Leakage-Resilient AKE (LR-AKE) protocols, whose
motivation, design principles, several constructions, security analysis and applications are explained in detail.

Key words : authentication, key exchange, leakage-resilience, DH, RSA

1. Introduction

Afier the appearance of public-key cryptography in Diffie
and Hellman’s seminal paper [1], many researchers have
extensively studied the problem of how to establish secure
channels among participating parties. In practice, secure
channels are indispensable because the major security
concerns in a vatiety of upper-layer applications (e.g., e-
commerce, Internet banking, and web-mail services) are
confidentiality and integrity of communications. Such
secure channels can be achieved by an authenticated key
exchange (so-called, AKE) protocol where the
participating parties authenticate one another and then
share “authenticated” session keys over insecure networks
(e.g., Internet). That means, an AKE protocol is said to
provide semantic security of session keys if an active
attacker, who can fully control the communications (e.g.,
by eavesdropping/replaying the messages, modification
attacks, and impersonation/man-in-the-middle attacks),

does not get any information about the shared session keys.

Note that the Diffie-Hellman protocol {1] is only secure
against a passive attacker who can just eavesdrop the
communications. In order to combine authentication with
key exchange, the participating parties need to share some
information in advance (we will discuss more details in the
next subsection). On the other hand, there are several
works on authentication protocols without the use of key
exchange in the literature. As Bellare and Rogaway
claimed in [2], authentication itself is rarely useful in the

Manuscript received September 30, 2008.

Manuscript revised November 6, 2008

1) Hideki Imai, Chuo University/AIST, h-imai@aist.go.ip.

2) SeongHan Shin, AIST/Chuo University, seonghan shin@aist.go.jp
3) Kazukuni Kobara, AIST/Chuo University, kobara_conf@aist.go.jp

absence of an associated key distribution (i.e., key
exchange) except the case that a physically secured
communication channel is used.

1. Classification of Authenticated Key Exchange

In this subsection, we classify the existing AKE protocols

into four settings according to the information, shared

among participating parties. For clarity, we deal with two-

party case (client C and server S) from here on.

® PKI (Public-Key Infrastructure) setting: In this
setting, any party holds a public key that is certified
by Certification Authority (CA) in the form of digital
signatures. The public key is shared and public to
everyone whereas the corresponding private key is
kept secret by its owner. The representative examples
subject to this setting can be found in many standards
(e.g., IETF [3,4], ISO/IEC [5], and IEEE [6]). A
typical approach for AKE protocols is to
append/incorporate digital signatures to the Diffie-
Hellman key exchange protocol [7-10]. Before
running such AKE protocols, client C (resp., server
$) should check the validity of server S’s public key
(resp., client C’s public key) via CRL (Certificate
Revocation Lists) or OCSP (Online Certificate Status
Protocol) or SCVP (Server-based Certificate
Verification Protocol). If a party skips this validity
check, he/she may communicate with an attacker
who impersonates the intended party.

® HEK (High-Entropy Key) setting: In this setting,
client C and server S share a high-entropy key in the
initialization phase. Here, a high-entropy key means a

client C and server S share a low-entropy key in the
initialization phase. Contrary to a high-entropy key,
even a computationally-bounded attacker can find out
a low-entropy key because it is chosen in the range of
exhaustive search. Throughout this paper, we fix such
low-entropy keys to passwords (e.g., 4-digit pin
codes or 6-symbol alphanumerical passwords) human
beings can remember. Of course, other types of
information such as biometric information can be
used for low-entropy keys (we will discuss that later).
In fact, passwords have been widely used for
authentication so far because it is very convenient to
users. However, if a party uses his/her password in
poorly-designed authentication (and AKE) protocols,
it might reveal the password that is commonly chosen
from a small size of dictionary. For example, let us
think of a simple challenge-response authentication
protocol: 1) server S sends a random number ¢ (as
“challenge™) to client C, 2) client C replies =H(pw,c)
(as “response”) where pw is the client’s password
and H is a one-way hash function and 3) on receiving
1, server S can authenticate client C by checking
whether r is correct or not. In the above example,
even a passive attacker who eavesdrops ¢ and r can
find out the client’s password pw by simply guessing
a password pw’ and testing if r is equal to H(pw’,c).
This attack is done off-line and performed for all
password candidates. These kinds of attacks, called
off-line dictionary attacks, should be avoided in the
AKE protocols. The problem of how to design AKE
protocols secure against active attacks and off-line
dictionary attacks has been unclear until Bellovin and
Merritt’s work [12]. The main idea of [12] is that
client C and server S mask/de-mask Diffie-Hellman
public values or a randomly-generated public key
with password. A list of secure AKE protocols for
this setting can be found in [13,14] where client C
remembers his/her password only and server S stores
the password or its transformed value (called,
password verification data). Another point one has to
keep in mind is that security of session keys in the
AKE protocols for this setting is weaker than that in
the AKF ones for PKI and HEK settings. The reason
is that, though off-line dictionary attacks are not

208 Special English Edition of Journal of KIISC
key that a computationally-bounded attacker cannot possible, an attacker can test a series of password
find out through exhaustive search. In the AKE candidates by interacting with the legitimate party.
protocols for this setting, client C and server S These kinds of attacks, called on-line dictionary
exchange random numbers (or Diffie-Hellman public attacks, are inevitable in the AKE protocols for this
values) along with MACs (Message Authentication setting. However, an appropriate countermeasure to
Codes), generated by the shared key [11]. on-line dictionary attacks can be taken (e.g., if there
Alternatively, client C and server S exchange random are a fixed number of failed trials on password,
numbers encrypted, using symmetric-key encryptions, server S locks the client’s account for some time
with the shared key. Of course, each party should interval).
keep the key secret all the time. ® HK (Hybrid Key) setting: In this setting, client C and
® LEK (Low-Entropy Key) setting: In this setting, server S share a low-entropy key and the server’s

uncertified public key (and a high-entropy key) in the
initialization phase. The corresponding private key is,
of course, kept secret by sever S. The work for this
setting started from [15] and further studied in [16-
19] where client C remembers his/her password and
stores server S’s public key, and server S stores
password verification data and the private key. The
main construction of [15-19] is that client C sends
his/her password encrypted, using public-key
encryptions, with server S’s public key and then
sever S can authenticate client C with the private key
and password verification data. Recently, Kolesnikov
and Rackoff [20,21] have proposed an AKE protocol
for this setting where client C remembers his/her
password and stores server S’s public key and a
MAC key whereas server S stores password
verification data, the private key and the same MAC
key. The construction of [20,21] is similar to [15-19]
except appending MACs to the message client C sent
to server S. In addition, the underlying public-key
encryptions in [20,21] should be IND-CCA2
(indistinguishability ~ against adaptive chosen
ciphertext attacks) secure [22].

As we showed above, there are already many secure
AKE protocols for different settings in the literature. In the
next section, we introduce a new type of AKE protocols
that can provide resilience against leakage of stored secrets
from client and/or server.

II. Leakage-Resilient AKE Protocols
1. Motivation

In cryptography, the security of cryptographic algorithms
or protocols usually depends on the assumption that secret
keys are secure. In other words, a private key and a high-
entropy key must be securely stored while a low-entropy
key is remembered by human beings. However, securing
secret keys is quite difficult in the real world because an
attacker has a wide range of ways for obtaining secret keys
including cryptanalysis, mishandling of information,
breaks-in into a computer system, insider attacks, side
channel attacks and social engineering (e.g., phishing [23]).

Introduction to Leakage-Resilient Authenticated Key Exchange Protocols and Their Applications 209

According to [24,25], the first top three sources of
financial losses are virus attacks, unauthorized access to
information (insider abuse of networks), and theft of
laptops and other mobile devices. From Table 1 in [25],
one can see that virus attacks are on the decrease from
2004 to 2008 while the percentage of laptop theft has no
significant change at that period. In particular, laptops and
PCs are stolen in every 53 seconds in the United States
[26]. These top three incidents account for 75% in total
and can also be linked to the leakage of stored secrets in
practice.

If we consider leakage of stored secrets in the existing
AKE protocols, it may end up with the total breakdown.
Such examples are [7-11] because authentication is based
on the stored secrets (i.c., private keys and shared high-
entropy keys) so that their leakages directly result in
impersonation of the victimized party. One may wonder if
the use of TRM (Tamper-Resistant Modules) can prevent
leakage of stored secrets. Of course, it may be an option
but it seems hard to materialize perfect TRM with low cost
[27,28]. Note that there is no silver bullet for preventing
stored secrets from leaking out. Therefore, our motivation
is to design an AKE protocol that is resilient against
leakage of stored secrets as much as possible. On the other
hand, the problem of leakage of stored secrets (i.c., private
keys) in public-key encryptions and digital signatures has
been considered in the recent years. The idea is to limit the
damage that can be caused by an attacker who obtains the
secrets from time to time. A brief survey for these works
can be found in [29,30].

2. Design Principles

Before introducing Leakage-Resilient AKE (so-called,
LR-AKE) protocols [31,32] and their general construction,
we explain the main design principles for LR-AKE
protocols. Remember that the goal of LR-AKE protocols is
to minimize the damage caused by leakages of stored
secrets from client and/or server.

The first design principle is multi-factor authentication
where a high-entropy key (i.e., a secret stored on devices)
and a low-entropy key (i.e., a password remembered by
human beings) are combined to be used for authentication.
The rationale behind this design principle is that we regard
human beings as another storage for a low-entropy key.
However, human beings cannot remember a high-entropy
key as well as many different low-entropy keys.

The second design principle is proactive security of
password. The idea is similar to [33] in the sense that a
password is distributed as shares between the involving
parties and each share evolves from time to time without
changing the password. However, the essential feature of
LR-AKE protocols is that the update information for each
share comes from a (temporary) secret, shared between the

client and the server only if the two parties successfully
authenticate each other.

The third design principle is to use masking techniques
that can prevent an attacker from performing off-line
dictionary attacks on the password even when the attacker
obtains a stored secret of the client. This is important
because the LR-AKE protocols we will introduce in the
following subsections are designed for a situation where a
client, who is communicating with many different kinds of
servers, remembers only one password and TRM are not
available.

3. DH-based LR-AKE Protocol

In this subsection, we introduce the Diffie-Hellman based
LR-AKE protocol [31] whose security is proven in the
standard model with the reduction to the DDH (Decisional
Diffie-Hellman) problem [34]. In fact, we introduce a
modified protocol of [31] where the stored secrets of client
and server are updated within the protocol execution.

We first explain some notations to be used. Let p and

g be two large primes such that ql p—1.Let G be a

finite cyclic group of prime orderq , and g and % are
of G . We also denote by
MAC(mk,msg) a message authentication code (e.g.,
HMAC-SHA-1 [35]) on a message msg with a key mk .

In the initialization phase of the DH-based LR-AKE
protocol, client C chooses a random id pcid, from an

two generators

appropriate range and a random element §, € Z;, and
then registers a hashed id Apcid, = H(pcid,) and a
verifier v, = h**?”(mod p) to server S securely where

H is a secure hash function and pw is the client’s

password. At the end of the initialization phase, client C
remembers only one password pw and stores another

secret §, along with the id pcid, on his/her devices
while server S stores the verifier v; and the hashed id
hpcid, . Note that the password pw is distributed into

two shares 5, and s, + pw by using (2,2)-threshold

secret sharing scheme [36]. The initialization is done only
once.

In the j-th (j=1) execution of the DH-based LR-

AKE protocol, client C and server S authenticate each
other and generate a session key. W.Lo.g., at the start of

the j -th protocol execution client C stores the id pcid

210 Special English Edition of Journal of KIISC

and the secret §;, and server S stores the hashed id
hpcid ; and the verifier v;.

1. First, client C chooses a random element x € Z;
and computes the Diffie-Hellman public value
X =g*(modp) . The public value X is
masked with v, as follows: X=X -v,(mod p)

i+ pw

—_ S -
where v, =h"""(mod p) . The client sends

peid; and X to the server.

2. If a hashed value of pcid,, received from the
client, is not equal to hpcid, , server S
terminates the protocol execution. Otherwise,
server §' chooses a random element y € Z ; and

Diffie-Hellman public value
Y = g”(mod p). The public value Y is masked

computes its

with v, as follows: YEY-vj(modp) . In

addition, the server de-masks the value X and
computes the Diffie-Hellman key as follows:

g¥=(X / v;) (modp). Then, server S computes
a MAC ¥, = MAC(mk,10|pcid S| X]|7)
where mk is the Diffie-Hellman key. The server
sendsitsid S, ¥ and ¥ to the client.

3. On receiving S, Y and Vs from the server,

client C de-masks the value ¥ and computes the
Diffie-Hellman key as follows:

gxyE(/_’/Vj)x(modp). If ¥, is not equal to
MAC(mk,10|pcid |S|X|F) . the client

terminates the protocol execution. Otherwise, the
client computes a MAC

Ve :M4C(mk,01||pcid j”S”)? ”Y) and generates
a session key SK :M4C(mk,11||pcidj||S||Y ”Y)
where mk is the Diffie-Hellman key. The MAC
value V. is sent to the server.

4. On receiving V. from the client, server S
verifies the MAC value. If V. is not equal to
MAC(mk, 01| pcid |S|X|Y) . the server

terminates the protocol execution. Otherwise, the

server generates a session key SK as follows:
SK = MAC(mk,11|pcid |S| X|[¥).

At the end of the j -th protocol execution, client C

updates the id peid,; to
pCidj“=H(gnypcidj”SU)?H)7) and the secret §; to

S =8, + MAC(mk,00|peid |S|X[T)modg while
server S
=H2(gxy”pcicé||S||)_(||)7) and the verifier v, to
v, =V, Hmodp where us = MAC(mk,00|pcid, |S| X|7) -

updates the hashed id /pcid;, to
hpcid,

+1

Alternatively, the client can update the id pcid ; asin the

initialization phase: client C chooses a random id
DCi ;41 from an appropriate range and then registers a

hashed id hcid,,; = H(pcid,,) to server § securely

with the session key SK . Finally, the client stores the id
pcid

i and the secret § ; and the server stores the

+1
hashed id Apcid ,, and the verifier v;,; which will be

used for the next session.

As we explained in Section 11.2, the DH-based LR-AKE
protocol realizes the three design principles: 1) the client
uses the password, remembered by his/her own, and the
secret, stored on his/her devices, for authentication; 2) it
provides proactive security of password because each
share of the password is distributed to the client and the
server, and is updated from an update secret, shared
between them only if authentication succeeds, without
changing the password; and 3) it uses the masking
technique with another generator 4 for the Diffie-
Hellman key exchange.

4. RSA-based LR-AKE Protocol

In this subsection, we introduce the RSA-based LR-AKE
protocol [32] whose security is proven in the random
oracle model [37] with the reduction to the RSA problem
[38].

First and foremost, we explain the RSA function [38],
one of the most famous public key cryptosystems. It has
the following three algorithms:

® On input of the security parameter /, an RSA key

generation algorithm outputs a pair of

public/private keys (PubK=/(e,n),PriK =(d,n))

such that (1) p,q are distinct odd primes of the
n=pq
and (3) e deZ

same length, 2) where

274 1<n<?!

*

o(ny A€

Introduction to Leakage-Resilient Authenticated Key Exchange Protocols and Their Applications 211

integers satisfying ed = 1mod @(n) where (-
is Euler’s phi function.
® Given the public key PubK and a message

msg € Z: , an encryption algorithm produces a
ciphertext ¢ =msg‘modn.
® Given the private key PriK and a ciphertext
CGZ; , a decryption algorithm recovers the
message msg = c‘modn.
Next, we explain some notations to be used. Let G be a
full-domain hash (FDH) function that maps {0,1}* to
Z;¥{1}. Let [be a hash function whose input is
arbitrary but output is in the range of {O,I}k where k is

the security parameter for hash functions.
In the initialization phase of the RSA-based LR-AKE

protocol, client C' chooses a random id pcid, from an
appropriate range and a random element §, € {O,I}k , and
then registers a hashed id hpcid, = H(pcid,) and a
verifier v, =5, @ pw to server S securely where pw

is the client’s password. At the same time, server S sends
its RSA public key PubK = (e,n), generated from the

above RSA key generation algorithm, securely to client C .
At the end of the initialization phase, client C' remembers

only one password pw and stores another secret ,, the
RSA public key PubK along with the id pcid, on
his/her devices while server S stores the verifier v, its
RSA private key PriK =(d,n) and the hashed id
hpcid, . Note that the password pw is distributed into

two shares s, and v, by using (2,2)-threshold secret
sharing scheme [36]. The initialization is done only once.
In the j-th (j>1) execution of the RSA-based LR-

AKE protocol, client C and server .S authenticate each
other and generate a session key. W.lo.g., at the start of

the j -th protocol execution client C stores the id pcid Iz
the secret § ; and the RSA public key PubK , and server
S stores the hashed id hpcid ;, the verifier v, and the
RSA private key Prik .

1. First, client C chooses a random element x € Z ;

and encrypts x with the RSA public key PubK :
y=x*mod#n. The client also computes a FDH

value W = G(vj), where v, =5, @ pw, and
the ciphertext y is then masked with W as
follows: Z = y-W (modn) . The client sends the

id pcid].,and Z to the server.
2. If a hashed value of pcid ;> Teceived from the
client, is not equal to hpcidj , server S

terminates the protocol execution. Otherwise, the
server computes a FDH value W = G(v;) with

which it de-masks the value Z as follows:
y=Z/W (modn) . Then, the server decrypts the
resultant ciphertext ¥ with the RSA private key

R . d
PriK in order to obtain x : x=y“ modn .
With x and other values, the server computes a

hash value V =H(l“pcidj“S”Z”Vj”x) that is
sent to the client with the id S .

3. On receiving Vg from the server, client C
verifies the hash value. If V is not equal to
H(alcidj ”S”Zij Hx), the client terminates the
protocol execution. Otherwise, the client computes
a hash value V, = H(Z“pcidj”S“Zij”x) and

session key SK as follows:

SK = H(3||pcidj”Sl|Z”vj“x) . The hash value

generates a

V. is sent to the server.

4. On receiving V, from the client, server S S
verifies the hash value. If ¥ is not equal to
H(ZHpcidj”SHZij”x) , the server terminates

the protocol execution. Otherwise, the server
generates a session key SK as follows:
SK = H(3|pcid |S|Z}v;).
Atthe end of the J -th protocol execution, client C updates the id
peid, o peid,,, = H(O|pcid |S|Z|v,|x) and te
seoret 5, 10 5, =5, ® H(4|pcid |S|Z|v,|x) while
sever S updates the hashed id hpcid, to
hpcid ., = H* (OHpcideSHZijHx) and the verifier v,

oV, =V, &® H(4||pcidj“S||Zij”x) . Alternatively,

212 Special English Edition of Journal of KIISC

the client can update the id pcid ; as in the initialization

phase: client C chooses a random id pcid 41 from an
appropriate range and then registers a hashed id
hpcid,,, = H(pcid,,) to server S securely with the
session key SK . Similarly, the server also can update its

RSA public key as in the initialization phase securely with
the session key SK . Finally, the client stores the id

pcid the secret §;,, and the RSA public key

j+l 2

PubK , and the server stores the hashed id hpcid ,, , the

verifier v;,, and the RSA private key PriK which will
be used for the next session.
The RSA-based LR-AKE protocol realizes the same

three design principles as sketched in the previous
subsection with the only difference: it uses the masking

technique with a FDH function G for the RSA ciphertext.
5. A General Construction for LR-AKE

Here, we propose a general construction for LR-AKE
protocols by strengthening security of any underlying
PAKE protocols (e.g., [13]) against leakage of stored
secrets. Specifically,

1. In the initialization phase, client C chooses a
random id pcid, and another secret s, from an

appropriate range (which should be equal to or larger
than the space of password), and then registers a

hashed id Apcid, = H(pcid,) and a verifier v, to
server S securely where H is a secure hash
function and v, is a combined value from the secret
s, and the client’s password pw. At the end of the
initialization phase, client C remembers only one
password pw and stores the secret §, along with the
id pcid, on his/her devices while server S stores
the verifier v, and the hashed id Apcid, .

2. In the j-th (j=1) protocol execution, client C
and server S run the underlying PAKE protocol P
using the id pcid; and the verifier v; instead of the

client’s id and the password verification data
(password pw or its transformed value),
respectively. If the client and the server successfully
authenticate each other, they end up with the shared
master secret ms from which a session key is
generated.

3. At the end of the j -th protocol execution, client C
updates the id pcid; to pcid

+ and the secret § f

to 5., while server S updates the hashed id

hpcid; to hpcid

j+ and the verifier v, to v,

where the (j+1) -th secrets (ie., pcid ,;, s,,,
hpcid,,, and v;,;) are updated with the j -th
secrets (ie., pcid i S5 hpcid , and v,), the
master secret ms and other values. Finally, the client

stores the id pcid, and the

4 and the secret s f

+1 2

server stores the hashed id Apcid j+1 and the verifier

Vin which will be used for the next session.

The graphical description of the general LR-AKE
construction from any PAKE protocol P is shown in Fig. 1.

Client (pw) Server

J-th sesslon

PAKE P

Fig. 1 A general LR-AKE construction from any PAKE protocol P

The basic idea of the above general LR-AKE
construction is that any PAKE protocol P has its own
masking technique so that we can construct an LR-AKE
protocol by adding multi-factor authentication and
proactive security of password to P . However, this
approach does not necessarily result in an efficient LR-
AKE protocol (see Section I1.4). As for efficiency, the
general LR-AKE construction does not require additional
communications but, depending on the underlying PAKE
protocol, it may need some extra computational costs for
updating the server’s stored secrets. The obvious, but
challenging, topic for LR-AKE protocols is to find out a
new masking technique.

Introduction to Leakage-Resilient Authenticated Key Exchange Protocols and Their Applications 213

II1. Security of LR-AKE Protocols
1. Security against Leakage of Stored Secrets

In this subsection, we explain the security of the LR-AKE
protocols against leakage of stored secrets from client
and/or server. From here on, we consider semantic security
of session keys and security of password under the
following three cases:
® Casel: An attacker obtains the stored secrets from
client C where the stored secrets are high-entropy
keys or private keys corresponding to (certified)
public keys for public-key encryptions or digital
signatures.
® Case2: An attacker obtains the stored secrets from
server S where the stored secrets are verifiers or
password verification data, directly related to the
client’s authentication information, and/or high-
entropy keys (except private keys).
® Case3: An attacker obtains the stored secrets from
server S where the stored secrets are private keys
corresponding to (certified) public keys for public-
key encryptions or digital signatures.
In the above cases, we assume that the client/server’s
(certified) public keys are known to an attacker. When
discussing semantic security of session keys in the
followings, we consider an active attacker who can fully
control the communications (e.g., by
cavesdropping/replaying the messages, modification
attacks, and impersonation/man-in-the-middle attacks).
For other security properties (e.g., perfect forward secrecy
and resistance to server-compromise impersonation
attacks), we briefly explain each security notion with an
attacker’s somewhat-restricted capabilities.

1.1. Security against Casel

Here, we explain the security of session keys and the
security of password against Casel in the LR-AKE
protocols. The Casel means that an attacker obtains the

client’s id pcid ; and another secret 5, of the J -th

(J 21) protocol execution. Of course, Casel can happen
repeatedly over time.

The LR-AKE protocols provide semantic security of
session keys against Casel in the sense that, if Casel
happens at some specific sessions, the security of session
keys depends on the number of on-line dictionary attacks
on the password. On the other hand, if Casel does not
happen in the j -th (j>1) protocol execution, on-line
dictionary attacks are not possible in the LR-AKE
protocols since the previously-leaked secrets are useless
due to proactive security of password. If an attacker wants
to continue on-line dictionary attacks, the attacker should

obtain the client’s updated stored secret for every session
(see Fig. 2).

Client * : leakage
. . ; ordine aftacks
1stsession are possible
. X onHine attacks
— e atoc
on-ine attacks
are not possible
) i m orine attacks
it session ¢ are notpossible
& on oo possile.
session PG, Sjri are possible
- 2reotposcis
re not possible

Fig. 2 Security of session keys against Casel

In addition, the LR-AKE protocols guarantee
information-theoretic security of password against Casel
simply because an attacker cannot get any information
about the password with only one share of (2,2)-threshold
secret sharing scheme.

1.2. Security against Case3

Here, we explain the security of session keys against
Case3 in the LR-AKE protocols where an attacker obtains
the server’s private key PriK (e.g., (d,n) in the RSA-
based LR-AKE protocol of Section I1.4). In Fig. 3, we
consider the LR-AKE protocols where the server’s private
key PriK is fixed for all sessions.

7]
@
4

HHOIe Seclie

1st session Pri

2nd session PriK

jh session Pri

@{+1)-th

session

1880

Fig. 3 Security of session keys against Case3

214 Special English Edition of Journal of KIISC

If Case3 does not happen, the LR-AKE protocols
provide semantic security of session keys since an attacker
cannot break the underlying public-key encryption and the
high-entropy key based authentication (denoted by ‘more
secure’ in Fig. 3). Even if Case3 happens in the j -th

protocol execution, the security of session keys in the
following sessions are guaranteed because the client and
the server share the high-entropy key as in [11] (denoted
by ‘secure’ in Fig. 3). In order to provide more security
against Case3, the server can update its private key by
sending a newly-generated public key securely to the
client with the temporal session keys.

1.3. Security against Case2 (and Casel)

Here, we explain the security of password against Case2
(and Casel) in the LR-AKE protocols. The Case2 means

that an attacker obtains the server’s hashed id Apcid ,; and

verifier v, of the j -th (j21) protocol execution.

Clearly, the LR-AKE protocols provide information-
theoretic security of password against Case2 by the same
reason as we discussed in Section II1.1.1.

Since the client remembers only one password in the
LR-AKE protocols, we need to protect the password as
much as possible. Due to the proactive security of
password, we can allow multiple leakages of stored secrets
from the client and the server. As the password is
distributed with (2,2)-threshold secret sharing scheme,
only the simultaneous leakages of stored secrets from both
the client and the server in the same session lead to the
exposure of the password (see Fig. 4).

Client Server

1st session hpeid,, v;

2nd session peidy, s, hpeids, v,

past secure,

GFEIT)

jhsession hpcid;, v;

ﬁ+1)_-th

session hpcidsit, Vi

nsecure

ERD

Fig. 4 Security of password against Casel and Case2

1.4. Security against Case2

Here, we discuss the security of session keys against
Case2 in the LR-AKE protocols. In fact, the LR-AKE
protocols shown in Section IL.3, II.4 and II.5 do not
provide semantic security of session keys against Case2

because an attacker, who obtains the verifier v; and

intercepts the id pcid; of the j -th (j21) protocol

execution, can freely impersonate the client.

In the below, we propose a simple and generic method
that can convert the LR-AKE protocols of Section II into
ones with semantic security of session keys against Case2.

1. In the initialization phase of the LR-AKE protocols,

client C additionally generates -a pair of
public/private keys (PubK.,PriK) for public-
key encryptions or digital signatures, and then
registers additionally the public key PubK_. to

server S securely. At the end of the initialization
phase of the LR-AKE protocols, client C and
server S additionally stores the private key
PriK. and PubK ., respectively.

2. In the j-th (j>1) protocol execution, client C

and server S run the LR-AKE protocols as they
are with the following additional procedures: 1) As
a final message from the client to the server, client

C computes a signature Sig(PriK,transcripi) ,
where franscript is a collection of exchanged
messages and Sig(PriK.,msg) is a signature
on a message msg with the signature key Prik,,
and then sends Sig(PriK,,transcript) to

server S ; and 2) The server successfully
completes the protocol execution of the LR-AKE
protocols only if the signature

Sig(PriK ., transcript) is valid (by verifying
that with the verification key PubK.).

The above converted LR-AKE protocols provide
semantic security of session keys against Case2 since an
attacker cannot generate a valid signature on the messages
exchanged between the attacker and the server.

1.5. Security against Case2 and Case3

Any AKE protocols are not secure against Case2 and
Case3 because an attacker has now enough information to
impersonate the server to the client. However even in these
cases, it is desirable to prevent the attacker from
impersonating the client to the server. This security

Introduction to Leakage-Resilient Authenticated Key Exchange Protocols and Their Applications

[]

15

property, called resistance to SCI (Server-Compromise
Impersonation) attacks, provides another layer of security
in the sense that sessions established by the server, without
being actively controlled by the attacker, remain secure
even if Case2 and Case3 happen. Here, we refer the above
security notion to ‘strong’ resistance to SCI attacks. Also,
we define ‘weak’ resistance to SCI attacks in the sense that
sessions established by the server, without being actively
controlled by the attacker, and the client, whose messages
are not actively controlled by the attacker as well, remain
secure even if Case2 and Case3 happen. In other words,
the weak resistance to SCI attacks allows the attacker only
to impersonate the client.

In the LR-AKE protocols, Case2 and Case3 means that

an attacker obtains the server’s hashed id hpcid; and
verifier V; (and its private key PriK if any) of the j-th

(j21) protocol execution. The LR-AKE protocols

shown in Section I1.3, I1.4 and IL.5 provide weak resistance
to SCI attacks since the attacker cannot compute the pre-

image of hpcid ; where the pre-image pcid; should be

sent out to the server by the attacker. On the other hand,
these protocols do not provide strong resistance to SCI
attacks: if the attacker intercepts messages from the

legitimate client, the attacker knows pcid ; that is used to

impersonate the client to the server. Interestingly, the
converted LR-AKE protocols by the method in Section
III.1.4 are strongly resistant to SCI attacks since the
attacker cannot generate a valid signature on messages,
sent out to the server. Note that the general idea to prevent
SCI attacks is to share the asymmetric-type keys between
the client and the server (c.f,, [39]).

1.6. Security against Casel, Case2 and Case3

In general, a key exchange protocol is said to have PFS
(Perfect Forward Secrecy) if the previously-established
session keys (and deleted from the memory) before the
compromise of the long-term Keys cannot be recovered.
Here, we extend the security notion in the following way:
A protocol has the extended PFS property if the leakages
of all the secrets do not compromise the security of session
keys established in the previous sessions and erased from
the memory before the leakages occurred. The extended
PFS property is concerned with limiting the effects of total
leakages of all the secrets which can be possible with
Casel, Case2 and Case3 in the LR-AKE protocols.

It is relatively clear that the DH-based LR-AKE
protocol of Section IL3 provides the extended PFS
property against Casel, Case2 and Case3 since the session
keys are generated from the Diffie-Hellman key exchange.
Actually, this is the same as shown in Fig. 4 in that the
past session keys are secure. However, it becomes

somewhat complicated in the RSA-based LR-AKE
protocol of Section IL4. That is, the extended PFS
property can be guaranteed against Casel, Case2 and
Case3 in the RSA-based LR-AKE protocol only for the
sessions without preceding leakage of stored secrets from

the client and the server (e.g., 1 to (j —1)-th session in
Fig. 5).

Client Server
hpeid;, vy, PriK \
hpeid,, v, PriK

1st session

2nd session pcid,, s,

jth session peid,, s hpeid;, v, PriK

il

1

session Pmd;+l= 8541 PCidiyy, Vi

BR0EE
i

Fig. 5 Extended PFS property against Casel, Case2 and Case3 in the
RSA-based LR-AKE protocol

2. Comparison

In this subsection, we compare the existing AKE protocols
in terms of how much each protocol is secure against
leakage of stored secrets from client or server. The brief
comparative result is in Table 1 where o (resp., x)
indicates “secure” (resp., “insecure”) with respect to
security of session keys and security of password.

From Table 1, one can easily see that the LR-AKE
protocols have the most leakage-resilience of stored
secrets from the client and the server, respectively. Other
security properties of the LR-AKE protocols against a
combination of Casel, Case2 and Case3 are already
discussed in Section IIL.1. For more detailed comparisons,
refer to [31,32].

Table 1: Comparison of the existing AKE protocols in terms of security
against leakage of stored secrets

Settings | Protocols

Security of Security of
session keys password
Casel | Case2 | Case3 | Casel | Case2
PKI [7-10] x o x — _
HEK [11] X X o - -
LEK [12,13] o X o o x
[15-21] o x X > <

HK LR-AKE | o o'l o ° o

*1: see Section III.1.4

216 Special English Edition of Journal of KIISC

IV. Applications
1. Credential Services

As one of the applications, the LR-AKE protocols can be
extended for the use of credential services [40]. Let us
consider a roaming client who accesses a network from
different locations and wants to temporarily retrieve
his/her private key corresponding to the certified public
key for public-key encryptions or digital signatures. This
roaming protocol can be supported by credential services
where a credential server authenticates the client and then
helps the client to recover his/her private key. The main
problem in credential services is leakage of stored secrets
(i.e., secrecy of private key with respect to the involving
credential server). By proposing an extended LR-AKE
protocol for credential services, we can provide a higher
level of security against leakage of stored secrets as well
as secrecy of private key w.r.t. to the credential server.
Specifically, the client’s private key is additionally
distributed between the client and the server in the
initialization phase and, after sharing an authenticated
session key between them in the protocol execution, the
server sends securely the partial private key to the client
and then each share is updated with the shared master
secret (i.e., proactive security of private key) like the
stored secrets of the client and the server. For more details,
refer to [40].

2. Wireless Networks Security

A challenging problem in wireless networks is to secure
communications, without affecting mobility and quality-
of-service, as well as to secure mobile devices of users.
This problem can be solved by using the LR-AKE
protocols [41,42]. In [41], a modified version of the RSA-
based LR-AKE protocol and its cooperation with PKI are
used for securing the handover procedure of host mobility

protocol (i.e., Mobile Internet Protocol version 6 (MIPv6)).

The similar approach is also used for dealing with AAA
(Authentication, Authorization and Accounting) issues in
the Network Mobility (NEMO) environment in [42]. Here,
we stress that the RSA-based LR-AKE protocol [32] is
very suitable for wireless networks since it is the most
efficient among the existing AKE protocols based on RSA
and password. In particular, if pre-computation is possible
the client needs to compute only one modular
multiplication (not modular exponentiation)! Refer to [32]
for more detailed discussions.

3. Personal Networks Security

The concept of personal networks has been considered as
representative for the next generation networks. However,
the current security mechanism has a weakness because
leakage of stored secrets from one node compromises the

whole security of personal networks. In order to avoid this
weakness, a modified LR-AKE protocol is used to deal
with key management and security against leakage of
stored secrets in the new security architecture for personal
networks [43]. Specifically, the proposed security
architecture involves two different types of
communications: PN (Personal Networks) wide
communication and communication between P-PANs
(Private Personal Area Networks) of two different users.
Note that the LR-AKE protocols are designed to provide
maximum security against leakage of stored secrets, not
perfect security.

4. Biometric-based Authentication

The LR-AKE protocols can be applied to biometric-based
authentication simply by substituting password with
biometric information. A concrete example is to use fuzzy
extractors [44] where a client additionally stores public
information about its biometric input and the randomness
(extracted from the biometric input) is used as password in
the LR-AKE protocols. Interestingly, this application
directly provides privacy of the biometric template as the
security of password in the LR-AKE protocols (c.f., [45]).

V. Summary

In this paper, we have introduced the Leakage-Resilient
AKE (LR-AKE) protocols, whose primary goal is to
minimize the damages caused by leakages of stored secrets,
by explaining their motivation, design principles, several
constructions, security analysis and applications. Note that
security guarantees (e.g., data protection, prevention of
identity theft and exposure of private information, and
access control) of many applications with the use of
cryptographic algorithms/protocols are also linked to the
problem of how to protect the cryptographic keys.

As a final remark, we strongly claim that storing some
secrets on client’s devices is the very small cost for a
higher level of security against leakage of stored secrets
because the use of laptops and mobile devices (e.g., cell
phones or PDAs) is already prevalent in the real world.
According to [46], the number of cell phone subscribers is
expected to reach at 4 billion people by the end of 2008.

References

[1] Diffie, W., and Hellman, M.. ‘New directions in
cryptography’, IEEE Trans. Information Theory, 1976, IT-
22, (6), pp. 644-654

[2] Bellare, M., and Rogaway, P.: ‘Provably-secure session key
distribution: the three party case’, Proc. ACM Sym. Theory
of Computing, 1995, pp. 57-66

[3] IETF: “Transport layer security (tlsy’,
http://www.ietf.org/html.charters/tls-charter. html

Introduction to Leakage-Resilient Authenticated Key Exchange Protocols and Their Applications 217

[4] IETF: ‘Internet key exchange (IKEv2) protocol’, 2004,
http://tools.ietf.org/html/draft-ietf-ipsec-ikev2-17

[5] ISO/IEC 11770-3: ‘Information technology - security
techniques — key management — part 3: mechanisms using
asymmetric techniques’, 2008

[6] IEEE 1363-2000: ‘Standard specifications for public key
cryptography’,
http://grouper.ieee.org/groups/1363/P1363/index.html

[7} Shoup, V.: ‘On formal models for secure key exchange’,
Theory of Cryptography Library, 1999

[8] Krawczyk, H.: ‘SIGMA: the ‘SIGn-and-Mac’ approach to
authenticated Diffie-Hellman and its use in the IKE
protocols’, Proc. CRYPTO 2003, 2003, pp. 400-425

[9] Menezes, A., Qu, M., and Vanstone, S.: ‘Some new key
agreement protocols providing mutual implicit
authentication’: Proc. Selected Areas in Cryptography, 1995

[10] Krawczyk, H.: ‘HMQV: a high-performance secure Diffie-
Hellman protocol’, Proc. CRYPTO 2005, 2005, pp. 546-566

[11} Bellare, M., and Rogaway, P.: ‘Entity authentication and
key distribution’, Proc. CRYPTO’93, 1993, pp. 232-249

[12] Bellovin, S. M., and Merritt, M.: ‘Encrypted key exchange:
password-based protocols secure against dictionary attacks’,
Proc. IEEE sym. Security and Privacy, 1992, pp. 72-84

[13] IEEE P1363.2: ‘Standard specifications for password based
public key cryptographic techniques’,
http://grouper.ieee.org/groups/1363/passwdPK/submissions.
himl

[14] http://jablon.org/passwordlinks.html

[15] Lomas, T., Gong, L., Saltzer, J.,, and Needham, R.:
‘Reducing risks from poorly chosen keys’, Proc. ACM Sym.
Operating System Principles, 1989, pp. 14-18

[16] Gong, L., Lomas, T., Needham, R., and Saltzer, J.:
‘Protecting poorly-chosen secrets from guessing attacks’,
IEEE J. Selected Areas in Communications, 1993, 11, (5),
pp. 648-656

[17] Gong, L.: ‘Optimal authentication protocols resistant to
password guessing attacks’, Proc. IEEE Computer Security
Foundation Workshop, 1995, pp. 24-29

[18] Halevi, S., and Krawczyk, H.: ‘Public-key cryptography and
password protocols’, ACM Trans. Information and System
Security, 1999, 2, (3), pp. 230-268

[19] Boyarsky, M. K.: ‘Public-key cryptography and password
protocols: the multi-user case’, Proc. ACM Conf. Computer
and Communications Security, 1999, pp. 63-72

[20] Kolesnikov, V., and Rackoff, C.: ‘Key exchange using
passwords and long keys’, Proc. TCC 2006, 2006, pp. 100-
119

[21] Kolesnikov, V., and Rackoff, C.: ‘Password mistyping in
two-factor-authenticated key exchange’, Proc. ICALP (2),
2008, pp. 702-714

[22] Rackoff, C., and Simon, D.: ‘Non-interactive zero-
knowledge proof of knowledge and chosen ciphertext
attack’, Proc. CRYPTO’91, 1992, pp.433-444

[23] Jakobsson, M., and Myers, S.: ‘Phishing and counter-
measures’ (John Wiley and Sons Inc., 2006)

[24] Lawrence, A. G., Martin, P. L., William, L., and Robert R.:
‘CSUFBI computer crime and security survey’, CSI, 2006,
http://i.cmpnet.com/gocsi/db_area/pdfs/fbi/FBI2006.pdf

[25] Robert, R.: ‘CSI computer crime & security survey’, 2008,
available at http://www.gocsi.com/

[26] http://www .user-groups.net/safenet/computer_theft.html

[27] Anderson, R., and Kuhn, M.: ‘Tamper resistance — a
cautionary note’, Proc. USENIX Workshop on Electronic
Commerce, 1996, pp. 1-11

{28] Anderson, R., and Kuhn, M.: ‘Low cost attacks on tamper
resistant devices’, Proc. Security Protocols, 1997, pp. 125-
136

[29] Franklin, M.: ‘A survey of key evolving cryptosystems’, Int.
I. Security and Networks, 2006, 1, (1/2), pp. 46-53

[30] Ttkis, G.: ‘Forward security — adaptive cryptography: time
evolution’, Handbook of Information Security, 2006, 3,
chapter 199 H. Bidgoli (Ed). Wiley Publishers

[31] Shin, S. H., Kobara, K., and Imai, H.: ‘A simple leakage-
resilient authenticated key establishment protocol, its
extensions, and applications’, IEICE Trans. Fundamentals
of Electronics, Communications and Computer Sciences,
2005, E88-A, (3), pp. 736-754. A preliminary version
appeared at ASITACRYPT 2003.

[32] Shin, S. H., Kobara, K., and Imai, H.: ‘An efficient and
leakage-resilient RSA-based authenticated key exchange
protocol with tight security reduction’, IEICE Trans.
Fundamentals of Electronics, Communications and
Computer Sciences, 2007, E90-A, (2), pp. 474-490

[33] Ostrovsky, R., and Yung, M.: ‘How to withstand mobile
virus attacks’, Proc. ACM Sym. Principles of Distributed
Computing, 1991, pp. 51-59

[34] Boneh, D.: ‘The decisional Diffie-Hellman problem’, Proc.
ANTS-IV, 1998, pp. 48-63

[35] Krawczyk, H., Bellare, M., and Canetti, R.: ‘HMAC: keyed-
hashing for message authentication’, IETF RFC 2104, 1997

[36] Shamir, A.: ‘How to share a secret’, Communications of the
ACM, 1979, 22, (11), pp. 612-613

[37] Bellare, M., and Rogaway, P.. ‘Random oracles are
practical: a paradigm for designing efficient protocols’, Proc.
ACM CCS’93, 1993, pp. 62-73

[38] Rivest, R. L., Shamir, A., and Adelman, L.: ‘A method for
obtaining digital signature and public-key cryptosystems’,
Technical Memo LCS/TM82, 1977

[39] Gentry, C., MacKenzie, P., and Ramzan, Z.: ‘A method for
making password-based key exchange resilient to server
compromise’, Proc. CRYPTO 2006, 2006, pp. 142-159

[40] Shin, S. H., Kobara, K., and Imai, H.: ‘A secure
authenticated key exchange protocol for credential services’,
IEICE Trans. Fundamentals of Electronics,
Communications and Computer Sciences, 2008, E91-A, (1),
pp. 139-149

[41] Fathi, H., Shin, S. H., Kobara, K., Chakraborty, S., Imai, H.,
and Prasad, R.: ‘Leakage-resilient security architecture for
mobile IPv6 in wireless overlay networks’, IEEE J. Selected
Areas in Communications, 2005, 23, (11), pp. 2182-2193

[42] Fathi, H., Shin, S. H., Kobara, K., Chakraborty, S., Imai, H.,
and Prasad, R.: ‘LR-AKE-based AAA for network mobility
(NEMO) over wireless links’, IEEE J. Selected Areas in
Communications, 2006, 24, (9), pp. 1725-1737

[43] Shin, S. H., Fathi, H., Kobara, K., Prasad, N. R., and Imai,
H.: ‘A new security architecture for personal networks and
its performance evaluation’, IEICE Trans. Communications,
2008, E91-B, (7), pp. 2255-2264

[44] Dodis, Y., Reyzin, L., and Smith, A.: ‘Fuzzy extractors:
how to generate strong keys from biometrics and other noisy
data’, Proc. EUROCRYPT 2004, 2004, pp. 523-540

