초록
원격탐사에서 위성 영상의 디지털 처리 기술이 발달하면서 GIS 자료와 지식 기반 전문가 시스템과의 통합에 대한 관심이 증가하고 있다. 본 연구에서는 위성영상을 토지피복 분류하는 과정에서 GIS 자료를 통합하기 위하여 기계 학습 기법과 규칙 기반 분류 기법을 적용하였다. 사례 지역을 대상으로 Landsat ETM+ 영상과 고도, 경사, 향, 수역과의 거리, 도로와의 거리, 인구밀도 등의 GIS 자료를 함께 활용하였다. C5.0 추론 기계 학습 알고리듬을 이용하여 350개의 표본점으로부터 결정 트리와 분류 규칙을 생성하였다. 본 연구에서 도출된 규칙을 이용하여 분류한 결과, 고독 수역과의 거리, 인구밀도 등의 GIS 자료가 규칙 기반 분류에 효과적인 것으로 나타났다. 본 연구에서 제안한 기계 학습과 지식 기반 분류 기법을 이용하면 다양한 GIS 자료들을 통합하여 위성영상을 보다 효과적으로 분류할 수 있다.
Integration of GIS data and human expert knowledge into digital image processing has long been acknowledged as a necessity to improve remote sensing image analysis. We propose inductive machine learning algorithm for GIS data integration and rule-based classification method for land cover classification. Proposed method is tested with a land cover classification of a Landsat ETM+ multispectral image and GIS data layers including elevation, aspect, slope, distance to water bodies, distance to road network, and population density. Decision trees and production rules for land cover classification are generated by C5.0 inductive machine learning algorithm with 350 stratified random point samples. Production rules are used for land cover classification integrated with unsupervised ISODATA classification. Result shows that GIS data layers such as elevation, distance to water bodies and population density can be effectively integrated for rule-based image classification. Intuitive production rules generated by inductive machine learning are easy to understand. Proposed method demonstrates how various GIS data layers can be integrated with remotely sensed imagery in a framework of knowledge base construction to improve land cover classification.