DOI QR코드

DOI QR Code

A Numerical Study of Sea Surface Cooling with the Passage of Typhoon Abby in the Northwestem Pacific

북서태평양에서 3차원 수치모델을 이용한 해수면냉각에 미치는 태풍의 영향

  • Hong, Chul-Hoon (Department of Marine Production Management, Pukyong National University)
  • 홍철훈 (부경대학교 해양생산시스템관리학부)
  • Published : 2008.12.31

Abstract

A three-dimensional primitive equation model (POM) and the buoy data (2900 N, 13500 E) from the Japan Meteorological Agency (JMA) for 27 typhoons between 1982 and 2000 are used to investigate the sea surface cooling (SSC) that accompanies typhoons in the northwestern Pacific. Observed sea surface temperatures (SSTs) rapidly drop 0.6 to 4.3 C, and SSC continues for several weeks after the passage of a typhoon. The model, which covers most of the northwestern Pacific ($24^{\circ}N$ to $52^{\circ}N$), simulated Typhoon Abby over the tropical Pacific, and successfully reproduces many observed features, including the pattern of SST decrease, inertial oscillations, etc. The model accurately simulated the SSC process, suggesting that the cyclonic eddy with a radius of a few hundred kilometers that trailed Typhoon Abby plays an important role in SSC.

Keywords

References

  1. Blumberg, A.F. and G.L. Mellor. 1987. A description of a three-dimensional coastal ocean circulation model, in Three Dimensional Coastal Ocean Models, Coastal Estuarine Sci., vol. 4, edited by N.S. Heaps, AGU, Washington, D.C., 1-208 https://doi.org/10.1029/CO004p0001
  2. Dickey, T., D. Frye, J. McNeil, D. Manov, N. Nelson, D. Sigurdson, H. Jannasch, D. Siegel, A. Michaels and R. Johnson. 1998. Upper-ocean temperature response to hurricane Felix as measured by the Bermuda test bed mooring. Mon. Wea. Rev., 126, 1195-1201 https://doi.org/10.1175/1520-0493(1998)126<1195:UOTRTH>2.0.CO;2
  3. Fedorov, K.N., A.A. Varfolomeev, A.I. Ginzburg, A.G. Zatsepin, A.Y. Krasnopevtsev and A.E. Skylarov. 1979. Thermal reaction of the ocean on the passage of the hurricane Ella. Okeanologiya, 19, 992-1001
  4. Fujita, T. Pressure distribution within typhoon. 1952. Geophys. Mag., 23, 437-451
  5. Hearn, C.J. and P.E. Holloway. 1990. A three-dimensional barotropic model of the response of the Australian North West Shelf to tropical cyclones, J. Phys. Oceanogr., 20, 60-80 https://doi.org/10.1175/1520-0485(1990)020<0060:ATDBMO>2.0.CO;2
  6. Hong, C.H. and J.H. Yoon. 1989. On the sea level variations of the Japan Sea in relation to typhoon, paper presented at Fifth Workshop, Jpn. And East China Seas Study, Kangnung, Korea
  7. Hong, C.H. and J.H. Yoon. 2003. A three-dimensional numerical simulation of Typhoon Holly in the northwestern Pacific Ocean. J. Geophys. Res., 108, C8, 3282, doi:10.1029/2002JC001563
  8. Hong, C.H. 2003. A three-dimensional numerical study of coastal upwelling in the northern Japanese coastal region with the passage of Typhoon Oliwa. J. Kor. Fish. Soc., 36(6), 723-734
  9. Jacob, S.D., L.K. Shay and A.J. Mariano. 2000. The 3D oceanic mixed layer response to hurricane Gilbert. J. Phys. Oceanogr., 30, 1407-1429 https://doi.org/10.1175/1520-0485(2000)030<1407:TOMLRT>2.0.CO;2
  10. Jacob, S.D. and L.K. Shay. 2003. The role of oceanic mesoscale features on the tropical cyclone-induced mixed layer response: A case study. J. Phys. Oceanogr., 33, 649-676 https://doi.org/10.1175/1520-0485(2003)33<649:TROOMF>2.0.CO;2
  11. Jordan, C.L. 1964. On the influence of tropical cyclones on the sea surface temperature. Proc. Sympo. Trop. Meteorol., Wellington, New Zealand Meteor. Serv., 614-622
  12. Leipper, D.F. 1967. Observed ocean conditions and Hurricane Hilda, 1964, J. Atmos. Sci. 24, 182-196 https://doi.org/10.1175/1520-0469(1967)024<0182:OOCAHH>2.0.CO;2
  13. Mellor, G.L. 1996. Users guide for a three-dimensional, primitive equation, numerical ocean model, report, 39 pp., Atmos. Oceanic Sci. Prog., Princeton Univ., Princeton, N.J., 1-34
  14. Miyazaki, M., T. Ueno and S. Unoki. 1961. Theoretical investigation of typhoon surges along the Japanese coast, Oceanogr. Mag., 13, 51-75
  15. Oh, I.S. and S.I. Kim. 1990. Numerical simulation of the storm surges in the seas around Korea. J. Oceanogr. Korea, 25, 161-181
  16. Pudov, V.D., A.A. Varfolomeev and K.N. Fedorov. 1979. Vertical structure of the wake of a typhoon in the upper ocean. Okeanologiya, 21, 142-146
  17. Price, J.F. 1981. Upper ocean response to a hurricane. J. Phys. Oceanogr., 11, 153-175 https://doi.org/10.1175/1520-0485(1981)011<0153:UORTAH>2.0.CO;2
  18. Price, J.F., R.A. Weller and R. Pinkel. 1986. Diurnal cycling: Observations andmodels of the upper ocean response to diurnal heating, cooling, and wind mixing. J. Geophys. Res., 91, 8411-8427 https://doi.org/10.1029/JC091iC07p08411
  19. Price, J.F., T.B. Sanford and G.Z. Forristall. 1994. Forced stage response to a moving hurricane. J. Phys. Oceanogr., 24, 233-260 https://doi.org/10.1175/1520-0485(1994)024<0233:FSRTAM>2.0.CO;2
  20. Sakaida, F., H. Kawamura and Y. Toba. 1998. Sea surface cooling caused by typhoons in the Tohoku area in August 1989, J. Geophys. Res., 103, 1053-1065 https://doi.org/10.1029/97JC01859
  21. Taira, K., S. Kitagawa, H. Otobe and T. Asai. 1993. Observation of temperature and velocity from a surface buoy moored in the Shikoku basin (OMLET- 88)-An oceanic response to a typhoon. Journal of Oceanography, 49, 397-406 https://doi.org/10.1007/BF02234956
  22. Wada, A. 2005. Numerical simulations of sea surface cooling by a mixed layer model during the passage of Typhoon Rex. Journal of Oceanography, 61, 41-57 https://doi.org/10.1007/s10872-005-0018-2
  23. Wright, R. 1969. Temperature structure across the Kuro- shio before and after Typhoon Shirley, Tellus, 21, 409-413 https://doi.org/10.1111/j.2153-3490.1969.tb00454.x

Cited by

  1. Temporal and Spatial Variation in the Freshwater Region in Noksan Bay with the Passage of Typhoons Using the POM vol.46, pp.1, 2013, https://doi.org/10.5657/KFAS.2013.0059
  2. Time series changes in sea-surface temperature, chlorophyll a, nutrients, and sea-wind in the East/Japan Sea on the left- and right-hand sides of typhoon shanshan’s track vol.45, pp.4, 2008, https://doi.org/10.1007/s12601-010-0023-2