References
-
Choi, J.H., Y.W. Seo and J.H. Seo. 2005. Biotechnological production and applications of coenzyme
$Q_{10}$ . Appl. Microbiol. Biotechnol., 68, 9-15 https://doi.org/10.1007/s00253-005-1946-x - Ernster, L. and G. Dallner. 1995. Biochemical, physiologi-cal and medical aspects of ubiquinone function. Biochim. Biophys. Acta, 1271, 195-204 https://doi.org/10.1016/0925-4439(95)00028-3
-
Gale, P.H., F.R. Koniuszy, A.G. Page Jr. and K. Folkers. 1961. Coenzyme Q. XXIV. On the significance of coenzyme
$Q_{10}$ in human tissues. Arch. Biochem. Biophys., 93, 211-213 https://doi.org/10.1016/0003-9861(61)90251-X - Grant, C.M., F.H. Maclver and I.W. Dawes. 1997. Mito-chondrial function is required for resistance to oxi-dative stress in the yeast Saccharomyces cerevisiae. FEBS Lett., 410, 219-222 https://doi.org/10.1016/S0014-5793(97)00592-9
- Gu, S.B., J.M. Yao, Q.P. Yuan, P.J. Xue, Z.M. Zheng and Z.L. Yu. 2006. Kinetics of Agrobacterium tumefaciens ubiquinone-10 batch production. Process Biochem., 41, 1908-1912 https://doi.org/10.1016/j.procbio.2006.04.002
- Ha, S.J., S.Y. Kim, J.H. Seo, H.J. Moon, K.M. Lee and J.K. Lee. 2007. Controlling the sucrose concentration increases Coenzyme Q10 production in fed-batch cul-ture of Agrobacterium tumefaciens. Appl. Microbiol. Biotechnol., 76, 109-116 https://doi.org/10.1007/s00253-007-0995-8
- James, A.M., R.A.J. Smith and M.P. Murphy. 2004. Anti-oxidant and prooxidant properties of mitochondrial coenzyme Q. Arch. Biochem. Biophys., 423, 47-56 https://doi.org/10.1016/j.abb.2003.12.025
-
Jeong, S.K., S.C. Ahn, I.S. Kong and J.K. Kim. 2008. Isolation and identification of a photosynthetic bac-terium containing high content of coenzyme
$Q_{10}$ . J. Fish. Sci. Technol., 11, 172-176 https://doi.org/10.5657/fas.2008.11.3.172 - Kokua, H., I. Eroglu, U. Gunduz, M. Yucel and L. Turker. 2003. Aspects of the metabolism of hydrogen produc-tion by Rhodobacter sphaeroides. Int. J. Hydrogen Energy, 27, 1315-1329
- Lee, J.K., G. Her, S.Y. Kim and J.H. Seo. 2004. Cloning and functional expression of the dps gene encoding decaprenyl diphosphate synthase from Agrobacterium tumefaciens. Biotechnol. Prog., 20, 51-56 https://doi.org/10.1021/bp034213e
-
Lipshutz, B.H., P. Mollard, S.S. Pfeiffer and W. Chrisman. 2002. A short, highly efficient synthesis of coenzyme
$Q_{10}$ . J. Am. Chem. Soc., 124, 14282-14283 https://doi.org/10.1021/ja021015v - Matsumura, M., T. Kobayashi and S. Aiba. 1983. Anae-robic production of ubiquinone-10 by Paracoccus dentrificans. Eur. J. Appl. Microbiol. Biotechnol., 17, 85-89 https://doi.org/10.1007/BF00499856
- Nagadomi, H., T. Kitamura, M. Watanabe and K. Sasaki. 2000. Simultaneous removal of chemical oxygen demand (COD), phosphate, nitrate and hydrogen sulphide in the synthetic sewage wastewater using porous ceramic immobilized photosynthetic bacteria. Biotechnol. Lett., 22, 1369-1374 https://doi.org/10.1023/A:1005688229783
-
Negishi, E., S.Y. Liou, C. Xu and S. Huo. 2002. A novel, highly selective, and general methodology for the synthesis of 1,5-diene-containing oligoisoprenoids of all possible geometrical combinations exemplified by an iterative and convergent synthesis of coenzyme
$Q_{10}$ . Org. Lett., 4, 261-264 https://doi.org/10.1021/ol010263d -
Park, Y.C., S.J. Kim, J.H. Choi, W.H. Lee, K.M. Park, M. Kawamukai, Y.W. Ryu and J.H. Seo. 2005. Batch and fed-batch production of coenzyme
$Q_{10}$ in recombinant Escherichia coli containing the decaprenyl dipho-sphate synthase gene from Gluconobacter suboxydans. Appl. Microbiol. Biotechnol., 67, 192-196 https://doi.org/10.1007/s00253-004-1743-y - Sasaki, K., T. Tanaka and S. Nagai. 1998. Use of photo-synthetic bacteria for production of SCP and chemi-cals from organic wastes. In: Bioconversion of waste materials to industrial products (2nd Edition). Martin, A.M., Ed. Blackie Academic and Professionals, New York, 247-291
- Sasaki, K., M. Watanabe, Y. Suda, A. Ishizuka and N. Noparatnaraporn. 2005. Applications of photosyn-thetic bacteria for medical fields. J. Biosci. Bioeng., 100, 481-488 https://doi.org/10.1263/jbb.100.481
- Saunders, V.A. and O.T.G. Jones. 1974. Properties of the cytochrome a-like material developed in the photo-synthetic bacterium Rhodopseudomonas spheroides when grown aerobically. BBA- Bioenergetics, 333, 439-445 https://doi.org/10.1016/0005-2728(74)90128-5
- Takahashi, S., T. Nishino and T. Koyama. 2003. Isolation and expression of Paracoccus dentrificans decaprenyl diphosphate synthase gene for production of ubi-quinone-10 in Escherichia coli. Biochem. Eng. J., 16, 183-190 https://doi.org/10.1016/S1369-703X(03)00035-4
- Takeno, K., K. Sasaki and N. Nishio. 1999. Removal of phosphorus from oyster farm mud sediment using a photosynthetic bacterium, Rhodobacter sphaeroides IL106. J. Biosci. Bioeng., 88, 410-415 https://doi.org/10.1016/S1389-1723(99)80218-7
-
Urakami, T. and T. Yoshida. 1993. Production of ubi-quinone and bacteriochlorophyll
$\alpha$ by Rhodobacter sphaeroides and Rhodobacter sulfidophilus. J. Fer-ment. Bioeng., 76, 191-194 https://doi.org/10.1016/0922-338X(93)90006-T -
Wu, Z.F., P.F. Weng, G.C. Du and J. Chen. 2001. Advances of coenzyme
$Q_{10}$ function studies. J. Ningbo Univ., 2, 85-88 - Yamada, Y., K. Haneda, S. Murayama and S. Shiomi. 1991. Application of fuzzy control system fermentation. J. Chem. Eng., 24, 94-99 https://doi.org/10.1252/jcej.24.94
-
Yen, H.W. and C.H. Chiu. 2007. The influences of aerobic-dark and anaerobic-light cultivation on Co
$Q_{10}$ pro-duction by Rhodobacter sphaeroides in the submer-ged fermenter. Enzyme Microb. Technol., 41, 600-604 https://doi.org/10.1016/j.enzmictec.2007.05.005 - Zhang, D., B. Shrestha, W. Niu, P. Tian and T. Tan. 2007. Phenotypes and fed-batch fermentation of ubiquin-one-overproducing fission yeast using ppt1 gene. J. Biotechnol., 128, 120-131 https://doi.org/10.1016/j.jbiotec.2006.09.012
Cited by
- Efficient production of coenzyme Q10 from acid hydrolysate of sweet sorghum juice by Rhodobacter sphaeroides vol.9, pp.39, 2019, https://doi.org/10.1039/c9ra03964c