DOI QR코드

DOI QR Code

사면 안정 문제에 대한 직접 전단 시험의 공학적 적용

Engineering Application of Direct Shear Box Test for Slope Stability Problem

  • 발행 : 2008.12.31

초록

현재 일본에서는 사면 안정 문제에 있어서 파괴면상의 전단강도는 일반적으로 점착력의 경험적 예측에 기초를 두고 있으며, 그 점착력은 표토상부에서 가정한 활동 면까지 흙두께에 비례한다고 가정한다. 이 예측법은 안정해석 결과가 설계자에 의한 영향을 받지 않는다는 점이 이점이나, 이론적인 배경이 부족하고, 파괴면 상의 흙두께가 매우 두꺼운 경우에는 점착력이 과다평가되어 역으로 때때로 그로 인한 전단저항각이 과소평가되지기도 한다. 본 연구에서는 2007년 효고현의 자연사면 파괴사례를 대상으로 파괴면상의 현장전단응력의 효과를 고려한 일련의 직접전단시험을 실시하여 주의 깊게 조사하였다. 그 결과, 초기전단음력을 고려한 시험으로부터 구한 전단강도가 사면파괴의 역해석에 적용되었을 때의 안전률이 현장상황과 부합하고 있음을 알 수 있었다.

In the current practice for slope stability problem in Japan, the shear strength, $\tau$, mobilized along the failure surface is usually estimated based on an empirical approximation in which the cohesion, c, is assumed to be equal to the soil thickness above the supposed slip surface, d(m). This approximation is advantageous in that the result of stability analysis is not influenced by the designers in charge. However, since the methodology has little theoretical background, the cohesion may often be grossly overestimated, and conversely the angle of shear resistance, $\phi$, is significantly underestimated, when the soil thickness above the supposed slip surface is quite large. In this paper, a case record of natural slope failure that took place in Hyogo Prefecture in 2007, is described in detail for the case in which the shear strength along the collapsed surface was carefully examined in a series of direct shear box (DSB) tests by considering the effects of in-situ shear stress along the slip surface. It is demonstrated that the factor of safety agrees with that of in-situ conditions when the shear strength from this kind of DSB test was employed for the back-analysis of the slope failure.

키워드

참고문헌

  1. Fellenius. W. (1936). 'Calculation of the Stability of Earth Dams', Trams. 2nd Congress on Large Dams, Vol.4, pp.445-462
  2. Jewell. R. A. and Wroth. C. P. (1987). 'Direct shcar tests on reinforced sand', Geotechnique 37, No.1, pp.53-68 https://doi.org/10.1680/geot.1987.37.1.53
  3. Mikasa. M. (1960). 'New direct shear test apparatus', Proc. 15th Annual Convention Jupanese Soc. Civ. Engrs. Tokyo, pp.45-48 (in Japanese).
  4. Shibuya. S. and Mitachi. T. (1997), 'Development of a fully digitized triaxial apparatus for testing soils and soft rocks', Geotechnical Engineering Journal, Vol.28, No.2, pp.183-207
  5. Shibuya. S., Mitaehi. T. and Tamate. S. (1997). Interpretation of direct shear box testing of sand as quasi-simple shear. Geotechnique, Vol.47, No.4, pp.769-790 https://doi.org/10.1680/geot.1997.47.4.769
  6. Shibuya, S., Koscki, J. and Kawaguchi. T. (2005). Recent developments in deformation and strength testing of geomaterials, Keynote Lecture. Deformation Characteristics of Geomaterials-recent inves tigations and Prospects (Di Benedetto H. et al edns), Taylor Francis Group London. pp.3-28
  7. Shibuya. S., Kawaguchi. T. and Chac. J-G. (2007). 'Failure of Reinforced Earth wall as attacked by Typhoon No. 23 in 2004', Soils ami Foundations, VoI.46, No.2, pp.153-160
  8. Shibuya. S., Jung. M. S., Chae, J. G. and Fujiwara. T. (2007). 'Evaluation of short-term stabillity for sea-wall structure at Kobe Airport', The Korean Society of Civil Engineers Vol.12, pp.155-163 https://doi.org/10.1007/s12205-008-0155-4
  9. Skempton. A. W. & Bishop, A. W. (1950). 'The measurement of the shear strength of soils', Geothchnique 2, pp.188-192
  10. Takada. N. (1993). 'Mikasa's direct shear apparatus, testing procedures and results', Geotech. Testing J. 16. No.3, pp.314-322 https://doi.org/10.1520/GTJ10052J