DOI QR코드

DOI QR Code

Development of Polyclonal Antibodies to Abdominal and Subcutaneous Adipocytes for Fat-Reduced Hanwoo Beef Production

한우 체지방 감소 쇠고기 생산을 위한 복강 및 피하지방 항체 개발

  • 최창원 (농촌진흥청 국립축산과학원) ;
  • 김유현 (농촌진흥청 국립축산과학원) ;
  • 김성진 (농촌진흥청 국립축산과학원) ;
  • 송만강 (충북대학교 축산학과) ;
  • 권응기 (농촌진흥청 국립축산과학원) ;
  • 오영균 (농촌진흥청 국립축산과학원) ;
  • 홍성구 (농촌진흥청 국립축산과학원) ;
  • 최성호 (충북대학교 축산학과) ;
  • 백경훈 (농촌진흥청 국립축산과학원)
  • Published : 2008.12.31

Abstract

This study aimed to develop polyclonal antibodies to regional inedible adipocytes of Korean native cattle (Hanwoo) and investigate cross-reactivity of the antibodies. Patterns in plasma membrane proteins (PMPs) from abdominal and subcutaneous adipocytes of Hanwoo isolated by collagenase digestion were investigated using SDS-PAGE. As antigens, abdominal and subcutaneous adipocyte PMPs of Hanwoo were injected to sheep 3 times at 3 wk intervals for passive immunization, and non-immunized serum and antisera were collected before and after the injections. Titers of the antisera obtained from sheep and their cross-reactivities with heart, kidney, liver, lung, muscle, and spleen of Hanwoo were determined by ELISA. Isolation and culture of abdominal and subcutaneous adipocytes of Hanwoo were performed for analysing LDH concentration. Based on the SDS-PAGE analysis, specific proteins of PMPs in abdominal and subcutaneous adipocytes appeared despite rather similar patterns between both adipocytes. At the level of 1:1,000 dilution, little antibody reactivity appeared in non-immunized serum whereas the antisera had relatively strong reactivity up to the level of 1:128,000 and 1:64,000 dilution. These findings may indicate that strong antibodies against adipocyte PMPs can be developed using an immunological approach. Extremely low reactivities of abdominal and subcutaneous adipocyte antisera were detected with PMPs of the organs. Both antisera strongly reacted with each adipocyte PMPs and showed statistically (p<0.01) higher cross-reactivities compared with non-immunized serum. In conclusion, these results may indicate that the present polyclonal antibodies against regional inedible adipocyte PMPs are well developed and have safety in cross-reactivities with body organs. Further studies on in vivo cross-reactivity and fat reduction of the antibodies against abdominal and subcutaneous adipocytes PMPs of Hanwoo should be required for inedible fat-reduced high quality beef production.

본 연구는 국내 고유종인 한우의 부위별 불가식 체지방 감소를 위한 특이 다클론 항체의 개발 및 타장기 안전성을 확인하고자 실시되었다. Collagenase digestion 방법으로 한우의 복강 및 피하지방세포 원형질막 단백질을 분리하여 면양에 3회에 걸쳐 수동면역 주사하고, 면역 주사 전 및 후에 비면역혈청과 항혈청(항체)을 생산하였다. 생산된 한우 부위별 지방 항체의 역가와 한우의 주요 장기 조직인 심장, 신장, 간장, 폐, 근육 및 비장세포의 원형질막 단백질에 대한 타장기 교차반응성과 한우의 부위별 지방 조직에서 지방세포를 분리하고 각각 배양시킨 후 개발된 한우 지방 항체를 직접 주입한 뒤 LDH 수준을 조사하였다. 복강 및 피하지방세포 원형질막 단백질들은 서로 유사하면서도 특이적인 단백질을 가지고 있는 것으로 SDS-PAGE 분석을 통해 확인할 수 있었다. 희석배율 1:1,000배를 기준으로 비 면역혈청은 항원-항체 결합 반응이 거의 측정되지 않았으나, 복강 및 피하지방 항체는 희석배율 1:128,000배 및 1:64,000배까지 각각 항원-항체 반응이 감지되었으며, 이는 본 연구에서 생산한 부위별 지방 특이 다클론 항체가 지방세포 원형질막 단백질에 대해 매우 강한 역가를 가진 항체임을 시사한다. 또한 복강 및 피하지방 항체는 타 장기들과는 특이한 반응을 나타내지 않았다. 본 연구에서 개발한 두 항체들은 모두 항원으로 이용된 부위의 지방세포 원형질막 단백질과 가장 높은 반응을 나타내었으며, 복강 및 피하지방특이항체는 비 면역혈청에 비해 유의적으로 높은 세포독성 효과가 있음을 확인할 수 있었다. 이상의 결과를 종합할 때 본 연구에서 개발된 복강 및 피하 지방 감소 다클론 항체는 높은 역가, 타 장기 안전성 및 세포 파괴 효과가 있었으며 생체 타장기 안전성 등 향 후 기존의 전체 지방에서 생산한 항체의 단점을 보완할 수 있는 연구가 지속될 경우 불가식 체지방이 감소된 저지방 한우 고급육 생산이 가능하리라고 사료된다.

Keywords

References

  1. Baek, K. H. (2003) Studies on the production of lean meats and the identification of Hanwoo (Korean Cattle) brand beef using immunological techniques. Ph.D. thesis. Yeungnam Univ., Gyeongsan, Korea
  2. Baek, K. H., Kwak, T. H., Oh, Y. S., Choi, C. W., Jung, K. K., and Choi, C. B. (2005) Studies on the development and utilization of polyclonal antibodies against swine adipocyte plasma membrane proteins. J. Anim. Sci. Technol. (in Korean) 47, 19-28 https://doi.org/10.5187/JAST.2005.47.1.019
  3. Baek, K. H., Kwon, E. J., Kwak, T. H., Jung, K. K., and Choi, C. B. (2000) In vitro cytotoxicity of polyclonal antibodies against proteins isolated from adipocyte plasma membrane of rats. J. Anim. Sci. Technol. (in Korean) 42, 261-268
  4. Butterwith, S. C., Kestin, S., Griffin, H. D., and Flint, D. J. (1989) Cytotoxic antibodies to chicken adipocytes and their precusors: Lack of tissue specificity. Br. Poult. Sci. 30, 371-378 https://doi.org/10.1080/00071668908417158
  5. Butterwith, S. C., Kestin, S., Griffin, H. D., Beattie, J., and Flint, D. J. (1992) Identification of chicken (Gallus Domesticus) adipocyte plasma membrane and differentiation specific proteins using SDS-PAGE and western blotting. Comp. Biochem. Physiol. B. 101, 147-151 https://doi.org/10.1016/0305-0491(92)90170-V
  6. Chikhou, F. H., Moloney, A. P., Allen, P., Quirke, J. F., Austin, F. H., and Roche, J. F. (1993) Long-term effects of cimaterol in friesian steers: Growth, feed efficiency, and selected carcass traits. J. Anim. Sci. 71, 906-913 https://doi.org/10.2527/1993.714906x
  7. Choi, C. B., Lee, M. J., and Kwon, E. J. (1997) Development of polyclonal antibody to adipocyte plasma membrane proteins isolated from Korean native cattle. Korean J. Anim. Sci. 39, 669-674
  8. Choi, C. B., Lee, M. J., and Kwon, E. J. (1998) Production of polyclonal antibodies specific to procine adipocyte plasma membrane proteins in sheep. Korean J. Biomed. Lab. Sci. 4, 57-63
  9. Choi, C. B. and Lee, S. R. (1996) Studies on the production of lean pork by immunological approach - Development of antibodies to porcine adipocyte plasma membrane. Korean J. Anim. Sci. 38, 369-374
  10. Dickerson, G. E. (1985) Potential use of genetic variation in components of animal growth. J. Anim. Sci. 61, 104-117 https://doi.org/10.1093/ansci/61.Supplement_2.104
  11. Dong, J., Froman, D. P., and Hu, C. Y. (1991) Development and characterization of polyclonal antibodies against chicken adipocytes. Comp. Biochem. Physiol. A 99, 195-198
  12. Duncan, D. B. (1955) Multiple range and multiple F test. Biometrics 11, 1-42 https://doi.org/10.2307/3001478
  13. Flint, D. J., Coggrave H., C. E. Futter., Gardner, M. J., and Clarke, D. J. (1986) Stimulatory and cytotoxic effects of an antiserum to adipocyte plasma membranes on adipose tissue metabolism in vitro and in vivo. Int. J. Obes. 10, 69-77
  14. Flint, D. J. (1992) Immunological manipulation of adiposity. Proc. Nutr. Soc. 51, 433-439 https://doi.org/10.1079/PNS19920056
  15. Flint, D. J. (1994) Immunomodulatory approaches for regulation of growth and body composition. Anim. Proc. 58, 301-312 https://doi.org/10.1017/S0003356100007224
  16. Kawai, Y. and Spiro, R. G. (1977a) Fat cell plasma membranes. I. Preparation, characterization, and chemical composition. Biol. Chem. 252, 6229-6235
  17. Kawai, Y. and Spiro, R. G. (1977b) Fat cell plasma membranes. II. Studies on the glycoprotein components. Biol. Chem. 252, 6236-6244
  18. Kestin, S., Kennedy, R., Tonner, E., Kiernan, M., Cryer, A., Griffin, H., Butterwith, S., Rhind, S., and Flint, D. J. (1993) Decreased fat content and increased lean in pigs treated with antibodies to adipocyte plasma membranes. J. Anim. Sci. 71, 1486-1494
  19. Kim, S. H., Byun, S. H., Lee, S. M., Hwang, J. H., Jeon, B. T., Moon, S. H., and Sung, S. H. (2007) Effects of supplementation period and levels of fermented mineral feed (Power-Mix$^{\circledR}$) on the growth and carcass characteristics of Hanwoo steer. Korean J. Food Sci. Ani. Resour. 27, 450-456 https://doi.org/10.5851/kosfa.2007.27.4.450
  20. Lo, H. F., August, T. R., Libeman, U. A., and Edelman, I. S. (1976) Dependence of renal (Na+/K+)-adenosine triphosphatase activity on thyroid status. J. Biol. Chem. 251, 7826-7833
  21. Moloney, A. P. (1995) Immunomodulation of fat deposition. Livest. Prod. Sci. 42, 239-245 https://doi.org/10.1016/0301-6226(95)00026-H
  22. Moloney, A. P., Allen, P., Ross, D. B., Olson, G., and Convey, E. M. (1990) Growth, feed efficiency and carcass composition of finishing friesian steers fed the $\beta$-adrenergic agonist L-644,969. J. Anim. Sci. 68, 1269-1277 https://doi.org/10.2527/1990.6851269x
  23. Nassar, A. H. and Hu, C. Y. (1991a) Growth and carcass characteristics of lambs passively immunized with antibodies developed against ovine adipocyte plasma membranes. J. Anim. Sci. 69, 578-586 https://doi.org/10.2527/1991.692578x
  24. Nassar, A. H. and Hu, C. Y. (1991b) Antibodies to ovine adipocyte plasma membranes recognize tissue and species specific plasma membrane components. Comp. Biochem. Physiol. 98B, 361-367
  25. Nassar, A. H. and Hu, C. Y. (1992) Characterization of polyclonal antibodies against ovine adipocyte plasma membranes. Int. J. Biochem. 24, 599-604 https://doi.org/10.1016/0020-711X(92)90333-V
  26. Panton, D., Futter, C. E., and Kestin., S. (1990) Increased growth and protein deposition in rats treated with antibodies to adipocytes. Am. J. Physiol. 258, E985-E989

Cited by

  1. Development of Polyclonal Antibodies to Abdominal and Subcutaneous Adipocyte for Producing Fat-reduced High Quality Pork vol.30, pp.1, 2010, https://doi.org/10.5851/kosfa.2010.30.1.87
  2. Development of Rapid Diagnostic Kit for Identification of Hanwoo (Korean Native Cattle) Brand Meat by Detecting BIO-TAG vol.34, pp.3, 2014, https://doi.org/10.5851/kosfa.2014.34.3.339
  3. 한우 복강 및 피하지방 감소 다클론 항체가 반추위 발효패턴 및 혈액 대사물질에 미치는 영향 vol.51, pp.3, 2008, https://doi.org/10.5187/jast.2009.51.3.231
  4. 체지방 감소 다클론 후보 항체가 비거세돈의 체중, 분 소화율 및 혈액 대사물질에 미치는 영향 vol.52, pp.5, 2008, https://doi.org/10.5187/jast.2010.52.5.375