DOI QR코드

DOI QR Code

Physiological Characteristics and ACE Inhibitory Activity of Lactobacillus zeae RMK354 Isolated from Raw Milk

원유에서 분리한 Lactobacillus zeae RMK354의 생리적 특성 및 ACE 억제능

  • Published : 2008.12.31

Abstract

In order to develop a new starter for fermented milk, 1037 bacterial strains were isolated from raw milk. The strain that showed excellent acid producing and angiotensin converting enzyme (ACE) inhibitory activity (88.6%) was selected and identified as a Lactobacillus zeae based on the result of API carbohydrate fermentation pattern and 16S rDNA sequence. Lactobacillus zeae RMK354 was investigated further to study its physiological characteristics. It showed strong ACE inhibitory activity compared with commercial LAB starters tested. The optimum growth temperature of L. zeae RMK354 was $40^{\circ}C$ and it took 10 hr to reach pH 4.3 under this condition. L. zeae RMK354 showed more sensitive to penicillin-G, bacitracin, novobiocin, in a comparison of 14 different antibiotics, and showed most resistance to polymyxin B and vancomycin. It showed higher esterase and leucine arylamidase activities compared with 16 other enzymes. It was comparatively tolerant to bile juice and able to survive at pH 2 for 3 hr. It showed inhibitory activity against Salmonella Typhimurium with the rate of 60%. Based on these and previous results, L. zeae RMK354 could be an excellent starter culture for fermented milk with high level of ACE inhibitory activity.

본 연구는 국내 각 지역의 목장에서 수거한 원유에서 분리된 젖산균을 대상으로 10% 환원탈지유에 $37^{\circ}C$에서 pH 4.4에 도달할 때까지 배양한 다음 각각에서 얻어진 유청으로 ACE 저해율을 측정한 결과 88.6%인 우수한 균주를 선발하였다. 선정된 균은 Gram 양성, rod형태의 homo균이며, 당 발효실험과 16S rRNA 분석결과 Lactobacillus zeae로 판명되었고, Lactobacillus zeae RMK354로 명명하였다. 발효유에 적합한 starter인지 확인하기 위해 생리적 특성을 조사하였다. L. zeae RMK354는 배양온도 $40^{\circ}C$에서 빠른 생장을 보였고, pH4.3에 도달하는데 10시간이 소요되었다. 16종의 항생제 중 polymyxin B와 vancomycin에 대해 내성이 높았으며, 효소활성실험에서 esterase와 leucine arylamidase의 활성도가 높았다. 담즙에 대한 내성이 있는 것으로 나타났으며, pH 내성 실험결과 pH 2에서 큰 변화가 없음에 따라 내신성이 있었다. 항균력 시험에서는 Escherichia coli와 Staphylococcus aureus에 대해 억제력이 없었으나 Salmonella typhimurium에 대해 60.0%의 항균력을 보였다. 이러한 결과를 토대로 ACE 억제활성능이 우수한 기능성 발효유 제품의 스타터로 L. zeae RMK354는 적합하다고 할 수 있다.

Keywords

References

  1. Ashar, M. N. and Chand, R. (2003) ACE-Inhibitory activity of lactic acid bacteria in fermented milks. Milchwissenschaft 58, 59-61
  2. Booth, I. R. (1985) Regulation of cytoplasmic pH in bacteria. Microbiol. Rev. 49, 359-378
  3. Clark, P. A., Cotton, L. N., and Martin, J. H. (1993) Selection of bifidobacteria for use as dietary adjuncts in cultured dairy foods: II-Tolerance to simulated pH of human stomachs. Cult. Dairy Prod. J. 28, 11-14
  4. Cushman, D. W. and Cheung, H. S. (1971) Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 20, 1637-1648 https://doi.org/10.1016/0006-2952(71)90292-9
  5. Gilbert, C., Blanc, B., Frot-Coutaz, J., Portalier, R. and Atlan, D. 1997. Comparison of cell surface proteinase activities within the Lactobacillus genus. J. Dairy. Res. 64, 561-571 https://doi.org/10.1017/S0022029997002355
  6. Gilliland, S. E. and Speck, M. L. (1977) Antagonistic action of Lactobacillus acidophilus toward intestinal and foodborne pathogens in associative cultures. J. Food Prot. 40, 820-823 https://doi.org/10.4315/0362-028X-40.12.820
  7. Gilliland, S. E. and Walker, D. K. (1990) Factors to consider when selecting a culture of Lactobacillus acidophilus as a dietary adjunct to produce a hypocholesterolemic effect in humans. J. Dairy Sci. 73, 905-911 https://doi.org/10.3168/jds.S0022-0302(90)78747-4
  8. Hammes, W. P., Weiss, N., and Holzapfel, W. (1992) The Genera Lactobacilli and Carnobacterium. In: The Prokaryotes. 2nd ed, Springer-Verlag Publication, New York, pp. 1563-1578
  9. Juillard, V., Laan, H., Kunji, E. R. S., Jeronimus-Stratingh, C. M., Bruins, A. P. and Konings, W. N. (1995) The extracellular P1-type proteinase of Lactococcus lactis hydrolyzes $\beta$- casein into more than one hundred different oligopeptides. J. Bacteriol. 177, 3472-3478 https://doi.org/10.1128/jb.177.12.3472-3478.1995
  10. Kim, E. R., Jung, B. M., Kim, J. Y., Kim, S. Y., Jung, H. K., Lee, H. J, and Chun, H. N. (2003) Basic physiological activities of Bifidobacterium infantis Maeil-K9 and Lactobacillus plantarum KCTC3099 selected by anticarcinogenic activities. Kor. J. Microbiol. Biotechnol. 31, 348-354
  11. Lee, N. K., Kim, H. W., Chang, H. I., Yun, C. W., Kim, S. W., Kang, C. W., and Paik, H. D. (2006) Probiotic properties of Lactobacillus plantarum NK81 isolated from jeotgal, a korean fermented food. Food Sci. Biotechnol. 15, 227-231
  12. Mcdonald, L. C., Fleming, H. P., and Hassan, H. M. (1990) Acid tolerance of Leuconostoc mesenteroides and Lactobacillus casei. Appl. Environ. Microbiol. 53, 2124-2128
  13. Park, S. Y., Ko, Y. T., Jeong, H. K., Yang, J. O., Chung, H. S., Kim, Y. B., and Ji, G. E. (1996) Effect of various lactic acid bacteria on the serum cholesterol levels in rats and resistance to acid, bile and antibiotics. Kor. J. Appl. Microbiol. Biotechnol. 24, 304-310
  14. Shim, S. M. and Lee, J. H. (2008) PCR-based detection of lactic acid bacteria in korean fermented vegetables with reca gene targeted species-specific primers. Kor. J. Microbiol. Biotechnol. 36, 96-100
  15. Sipola, M., Finckenberg, P., Korpela, R., Vapaatalo, H., and Nurminen, M. L. (2002) Effect of long-term intake of milk products on blood pressure in hypertensive rats. J. Dairy Res. 69, 103-111
  16. Smacchi, E. and Gubbetti, M. (2000) Bioactive peptides in dairy products: synthesis and interaction with proteolytic enzymes. Food Microbiol. 17, 129 -141 https://doi.org/10.1006/fmic.1999.0302
  17. Torriani, S., Felis, G. E., and Dellaglio, F. (2001) Differentiation of Lactobacillus plantarum, L. pentosus and L. paraplantarum by recA gene sequence analysis and multiplex PCR assay with recA gene-derived primer. Appl. Environ. Microbial. 67, 3450-3454 https://doi.org/10.1128/AEM.67.8.3450-3454.2001
  18. 水島裕, 宮本昭正 (1996) 今日の治療藥, 南江堂, 東京, pp. 505-506

Cited by

  1. Inhibitory Effect on Angiotensin-converting Enzyme (ACE) and Optimization for Production of Ovotransferrin Hydrolysates vol.30, pp.2, 2010, https://doi.org/10.5851/kosfa.2010.30.2.286
  2. Nutritional and Physiologically Active Characterizations of the Sea Squirt Halocynthia roretzi Sikhae and the Seasoned Sea Squirt vol.47, pp.1, 2014, https://doi.org/10.5657/KFAS.2014.0001
  3. Growth Characteristics and Physiological Properties in Milk of Lactobacillus casei CU2604 Isolated from Adult Feces vol.29, pp.5, 2009, https://doi.org/10.5851/kosfa.2009.29.5.619
  4. Angiotensin-Converting Enzyme Inhibitory Activity of Enzymatic Hydrolysates of Crassostrea gigas (Oyster) vol.22, pp.2, 2012, https://doi.org/10.5352/JLS.2012.22.2.220
  5. Isolation and Characterization of Lactic Acid Bacteria with Angiotensin-Converting Enzyme Inhibitory and Antioxidative Activities vol.21, pp.10, 2011, https://doi.org/10.5352/JLS.2011.21.10.1428
  6. Physiological Characteristics and Immunomodulating Activity by Lactobacillus paracasei subsp. paracasei BFI46 Isolated from New-Born Infant Feces vol.30, pp.2, 2010, https://doi.org/10.5851/kosfa.2010.30.2.223
  7. Antimicrobial Resistance of Lactobacillus johnsonii and Lactobacillus zeae in Raw Milk vol.8, pp.12, 2008, https://doi.org/10.3390/pr8121627