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1. Introduction

The capacitated re-entrant line (CRL} {4], considered in
this work, consists of £ workstations supporting the pro-
duction of a single product type. Each workstation W}, i =
1,2,--, L, has B, buffer slots and S, identical servers. The
production of each unit occurs in M stages, where each job
stage J, j=1,2, -, M, is supported by one of the system
workstations, which is denoted by W(Jj). Then there exists
at least one workstation W, such that {5: W(J;) =W, = 2.
This is the re-entrant nature of the line, which can be charac-
terized by M > L.

The operational behavior of the line can be described as
follows: Each job instance visits the workstation for the ex-
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ecution of some processing stage and it is allocated one unit
of buffering capacity. It holds it exclusively during staying
in the station, while blocking other job instances coming into
the station. In the station, the job instance competes for one
of the workstation servers for the execution of the requested
job stage. After having finished the processing of its current
stage, the job instance waits in its allocated buffer for being
transferred to the next requested station. Due to the finite
buffering capacity, this should be controlied by a structural
control policy (SCP) [19] which ensures that the destination
workstation has free buffering capacity and it is still physi-
cally possible to process all running job instances to com-
pletion after the transfer. Under this operational framework,
the CRL scheduling problem considered in this work can
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be posed as determining how to allocate the workstation buf-
fering and processing capacity to the competing job in-
stances, in order to maximize the long-run system through-
put, while maintaining the logical correctness of the system
behavior, which is called a deadlock-free operation.

<Figure 1> shows an example CRL system consisting of
two single-server workstations with buffering capacities B,
=1 and B, =2 for workstation W, {=1,2, respectively.
The supported production sequence is W, — W, — W, with
W(J,) = W(J,) =W, and W(J,) = W,. For this config-
uration, the optimal deadlock avoidance policy is to maintain
the total number of job instances in J; and .J, less than or
equal to 2.

JT Wi->W2->W1

<Figure 1> An example CRL

Based on these remarks, in this paper, we consider a genet-
ic approach to the CRL scheduling problem, which is compu-
tationally efficient and scalable. More speciﬁcaily, a chromo-
some including all the information needed for controlling the
system behavior is defined; it considers all possible cases
of the system states w.r.t. buffer levels of workstations and
assigns a preferred job stage at each possible buffer level
for all workstations. A set of chromosomes is randomly se-
lected, forming a population, and the chromosomes in the
selected population are subject to an evolution process in
order to get more improved solution, in terms of the pre-
specified performance objective, specifically the system
throughput. The proposed algorithm is evaluated by perform-
ing numerical experiments, resulting in that the suggested
approach holds considerable promise for providing effective
and computationally efficient approximations to the optimal
CRL scheduling policy that consistently outperforms the typ-
ically employed heuristics.

The rest of this paper is organized as follows. Section
2 briefly summarizes the past development of the scheduling
problems in the re-entrant line. In section 3, the suggested
genetic algorithm is described including chromosome repre-
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sentation, genetic operators, and the practical implementation
method. Section 4 assesses the capability of the suggested
method through a numerical experiment. Finally, section 5
concludes the paper with some directions for future work.

2. Brief Literature review

During the last 15 years, there have been a lot of works
dealing with the scheduling problem in the uncapacitated
re-entrant line. Many of the developed results in [8-10, 14,
21] are analytically strong and a representative exposition
of these results is provided in the survey paper in {11]. How-
ever, the results derived in the past works cannot be directly
transferred to the CRL model, because there are many com-
plications resulting from the blocking effect due to the finite
buffering capacity. Specifically, the work in [18] demon-
strated that these additional material flow dynamics negate
prior analytical results based on the study of the basic re-en-
trant line model with infinite buffering capacity, in a strong
qualitative sense, and necessitate the re-examination of the
problem in the CRL model.

Moreover, results in [13] and [16] seem to suggest that
this policy will be computationally intractable. Of particular
interest to overcome this issue were the so-called parametric
representation Neuro-Dynamic Programming (NDP) methods
[1,5,6,17,20]. These methods recast the considered sched-
uling problem as the problem of selecting an appropriate set
of values for a parametric architecture that will eventually
define the adopted scheduling policy. However, they require
the complete enumeration of the entire state space and the
number of states is a super-polynomial function of the ele-
ments defining the CRL scheduling problem. These facts re-
strict the practical applicability of the results to real applica-
tions and still necessitate the development of scalable and
efficient approximation methods to it.

Another computational systematic heuristic method that
might provide considerable promise for such scalable and
efficient approximation to the optimal solution of the consid-
ered CRL scheduling problem is a genetic approach. During
last decades, there have been a significant number of works
dealing with the scheduling problem using genetic approa-
ches and a systematic classification of genetic algorithms can
be found in [3]. However, they only focused on the schedul-
ing problems with infinite buffering capacity, while not con-
sidering blocking effects due to the finite buffering capacity
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in designing a chromosome and genetic operators. In the next
section, we describe the suggested genetic algorithm to the
CRL scheduling problem which considers the buffer occu-
pancy of the workstation in the design of the chromosome
in order to implicitly reflect the blocking effects due to the
finiteness of the buffering capacity.

3. Genetic Approach to the CRL
scheduling problem

In general, a genetic algorithm(GA) [15] consists of sev-
eral components such as chromosome representation, pop-
ulation initialization, evaluation of fitness, and genetic opera-
tors. Each of these components for the suggested GA is de-
fined as follows:

3.1 Chromosome representation scheme

First of all, a representation scheme for the genetic struc-
ture of solutions to the considered CRL scheduling problem
should be defined, which is a key aspect of a genetic algo-
rithm. More specifically, the employed representation scheme
should consider how to provide the validity of solutions so
that all chromosomes generated are feasible to the considered
problem. Furthermore, it also should provide the optimality
of solutions so that the final solution of the GA is mapped
to a prominent scheduling policy with high performance for
the considered CRL scheduling problem. Based on these re-
marks, the structure of a chromosome to the CRL scheduling
problem is defined as follows:

Definition 1 : A chromosome, P, is defined as P = (7, P},
1 L pL L k
oy Py By P -~,PBL), where each P, represents a

prioritized job stage at workstation W, with n, job instances
that are waiting for processing or being processed, so that
PF€o(W), where (W) is the index set of job stages

processed in workstation .

L

The suggested structure of a chromosome has (B, +1)
i=1

components, and each value is translated into a prioritized
job instance for allocating the workstation buffering and
processing capacity at a given decision epoch. The job prior-
ity means that, at workstation W, with n, job instances, a

Jjob instance specified by P,f’c is considered first for allocating

resources. However, if it is not available, any other job in-
stances can be allowed for allocating buffering and process-
ing capacity. We define this policy as a priority-based
randomized policy as follows:

Definition 2 : Priority-based Randomized Poilcy is a policy
that first allocates resources to a prioritized job instance if
it is available. Otherwise, it considers any available job in-
stance for allocating resources.

The characteristic of the scheduling policy represented by
the structure of P is to allocate available resources based
on buffer level information. This idea is based on some
queueing theoretic concepts and results from the past re-
search work {2, 12] for uncapacitated re-entrant line schedul-
ing problem. This policy satisfies the requirements of the
representation scheme for the genetic structure of solutions
as follows:

Property 1 : The suggested representation scheme of the chro-
mosomes guarantees the validity and optimality of solutions
of GA for the considered CRL scheduling problem.

The proof of Property 1 can be based on the nature of
the priority-based randomized policy for allocating resources
to the job instance represented by each component of a chro-
mosome.

3.2 Population initialization and Evaluation of
fitness

Based on the representational scheme of a chromosome
suggested in section 3.1, a group of chromosomes are ran-
domly created, becoming a population. Then elements in the
population are evaluated and rated according to their fitness.

More specifically, each P,fk in P is chosen randomly from

the set o(1%,), which satisfies the feasibility of the schedul-
ing policy translated from the considered chromosome. The
size of the initial population should be even number with
reasonable size.

The fitness of a chromosome is evaluated by measuring
the maximal throughput of the system that can be achieved
by the translated scheduling policy. In general, the through-
put of the considered CRL scheduling policy can be eval-
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vated by using either a well-known modeling and analysis
framework such as Markov decision process (MDP), or a

simulation. A chromosome with the highest value of fitness

is selected as the current solution for the CRL scheduling
problem.

3.3 Genetic Operators

Chromosomes are arranged in descending order of fitness
and then paired with each other from the one having the
highest value of fitness and the next highest one, and so
on, becoming parents. Each pair of parents generates two
new offsprings, where genetic operators are used to change
the genetic composition of offsprings. This procedure is
called reproduction. After generating new offsprings, they
are evaluated and a new population of chromosomes is se-
lected again, while finding a new improved solution. All the
chromosomes are subject to this evolutionary process until
an appropriate one, satisfying a pre-specified stopping rule,
is obtained.

’

| Offspring 1

ParenHlﬁ1 2 I,:(>| 1] 4

Parent 2 l 3 l 4 l l 3 I 2

| Offspring 2

(a) Single-point crossover
4

Parent1[1 2t3 4| |11617|4'Offspring1

Parent2| 5 | 6] 7 |8 | [ 5[ 2]3 [8|Offspring 2

{b) Two-point crossover

<Figure 2> Crossover operators

Two genetic operators are designed for this purpose : the
crossover and the mutation operator.

3.3.1 Crossover operator

This is an operator to generate offsprings from two chro-
mosomes by exchanging some parts of their components. In
this work, we consider two kinds of crossover operators as
in <Figure 2>; (i) Single-point crossover (SPC) and (it) Two-
point crossover (TPC). SPC operator divides each chromo-
some into two parts and exchanges the latter part between
them (In <Figure 2> (a), parts 2 and 4 are exchanged be-
tween parent 1 and 2). In TPC operation, two points are
selected randomly and the components between two selected
points are exchanged to generate two new offsprings. By
selecting one of these operators and applying it with a
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pre-specified rate r.(0 <r, < 1), two offsprings are created
from the parents.

3.3.2 Mutation operator

Each component of the new offsprings generated is con-
sidered for performing the mutation operation with a pre-
specified rate, which is represented by r,,(0 <r,, <1). The
mutation rate is the probability that an inherited feature of
an offspring mutates into another value. Mutation can be
thought of as a transition from a current solution to its neigh-
borhood in a local improvement search algorithm, which is
used to prevent the algorithm from falling into local optimal
solution. If the operation is allowed, then the value of the
considered component is changed with a randomly selected
value from the set o(W}).

3.4 Implementation of the Genetic Algorithm

The suggested genetic algorithm was implemented as fol-
lows:

i) Step 1 : Initialization
Start with an initial population of size n, where n is
integer. Specifically, we determined the value of n by using

L
0.01*(H|a( VI/i)]B+]‘) (However, if n < 10, we used n =
i=1

10). Evaluate the fitness of each member in the current pop-
ulation by using MDP framework [5]. Sort chromosomes in
descending order of fitness. Identify the best solution which
has maximum throughput in the current population. Go to
step 2.

i) Step 2 : Iteration

Pair up the chromosomes by selecting two chromosomes
in the direction from the highest to the lowest. By selecting
the values r,=0.9 and r,, =0.3, apply the crossover and
the mutation operations to each parent. The selection of the
values of r, and r,, was based on the observation that it
would be better to have more crossover operations and less
mutations since i) in each iteration the suggested GA updates
the population with chromosomes with better fitness, there-
fore ii) there would be less benefits from mutation. Evaluate
the fitness of new generated members. Form a new pop-
ulation with same size for next iteration by selecting n best
members among the new generated offsprings and the current
population. Sort them in descending order of fitness and
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identify the best solution which has maximum throughput
in the new population. If it is improved, then update the
current best solution. Otherwise, remove it and go to step
3.

iii} Step 3 : Stopping rule

The algorithm stops when it performs three times of con-
secutive iterations without any improvement in the best trial
solution found so far. Otherwise, go to step 2.

iv) Evaluation of a chromosome

The throughput achieved by the considered chromosome
can be computed by modeling the system behavior as a con-
tinuous-time Markov decision process (CT-MDP) [5], where
the corresponding policy is deterministic and the average re-
ward J'(i) is accumulated by the control defined by the
chromosome. Then we have J'(:) =\" for all states 4 be-
cause the structure of the underlying CT-MDP is communi-
cating. Furthermore, there exists a function R*(3) for all
states ¢, that satisfies the following Bellman’s optimality
equation:

*,N _ max

B =, o[ Gl =Nl + gk G)] (1)

jes

where G(i,u) is the single-stage expected reward for state
i, 7.(u) is the expected sojourn time at state i, S is the
set of states, and p;;(u) is the transition probability from
state ¢ to state 7 by taking an action w, which is defined
at state i. By solving Equation (1), we can compute the
throughput achieved by the considered chromosome.

4. An Experimental Investigation

We performed an experimental investigation on the poten-
tial performance of the suggested genetic algorithm by gen-

erating some prototypical example configurations and the
performance of the suggested algorithm was compared with
the performance by using some well-known heuristics.

4.1 Design of a numerical experiment

For an experimental investigation, we considered the same
configuration and same parameter values for processing
times as in [5], because, by doing that, eventually we may
even compare the performance of the suggested GA with
the potential performance of the parametric representation
NDP method suggested in [5]. More specifically, two types
of re-entrant line was considered, the first consisting of two
single-server workstations and the second consisting of three
single-server workstations. Both of these lines are under the
operational framework stated in section 1, while the adopted
SCP was the optimal -i.e., maximally permissive-policy. For
each type of re-entrant line, different configurations were
generated by changing buffering capacities; <Table 1> sum-
marizes the system configurations used in this experiment.
For each configuration, 30 problem instances with randomly
generated processing rates were considered.

4.2 Experimental results

In order to assess the quality of the two suggested algo-

rithms, we defined the percent error by

Optimal TH—~ THby GA
Optimal TH

% error = X100

(2)

Then the performance of the two suggested GA, GA-SPC
and GA-TPC was tested. We also compared the percent error
attained by the proposed algorithms to the percent error gen-
erated by the parametric representation NDP method sug-
gested in [5] and some known heuristics that have been
shown to perform well in the case of uncapacitated re-entrant

<Table 1> System Configurations considered in the numerical experiment

Configurations Number of workstations Number of job stages (JS) and job routes Buffer capacities
Conf | (B, B)=(,2)
Conf 2 2 3IS( W, — W, — W) (B, B) =32
Conf 3 (B, B) =4, 4)
Conf 4 (B, B, B)=(1,2,2
Conf 5 3 HS(W =W, —> W, —> W) (B: B, B)=(,2,2
Conf 6 (B, B, B)=43,2)




lines, namely, the first bufer first serve (FBFS), last buffer
first serve (LBFS), and first in first out (FIFO) policies [5].
The results were summarized in <Table 2>. More specifi-
cally, it lists the average, minimum, and maximum percent
errors of throughput obtained by using the aforementioned
methods.

4.3 Assessments

Some interesting observations regarding the results of this
numerical experiment and their implications for the quality
011 the suggested GAs can be summarized as follows.

Overall, the percent errors generated by the suggested GAs
are rather small compared to those generated by the consid-
ered heuristics.

Even more importantly, the suggested GAs are more con-
sistent in their performance than the considered heuristics,
as represented by the reported maximum percent errors.

Compared to the parametric representation NDP method
[5], it seems that the suggested GAs have large percent
errors. However, from the practical point of view, the para-
metric representation NDP method are not efficient in the
sense that it should generate all state space and it is not
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proximation architecture. Furthermore, the differences of the
percent errors generated by the considered GAs are not sig-
nificant that much.

More interestingly, in case of Conf3, the suggested GAs
have smaller values of average, minimum, and maximum
percent errors than the values of NDP method.

4.4 Statistical significance of the differences of
the two algorithms

The significance of the differences of the two algorithms,
GA-SPC and GA-TPC, was checked by testing the statistical
significance of the mean difference of the average percent
errors resulting by applying the two algorithms. This test
is performed as follows:

We have 180 paired observations of the percent errors.
By defining a single derived variable D as the difference
between the paired values on percent errors resulting from
using GA-SPC and GA-TPC, we can compute the observed
sample mean difference D and sample standard deviation
sp as follows:

(3

casy to develop an efficient tuning algorithm to find the ap-

p=1
n

D,

n=1

{Table 2> Comparison of performance for the considered re-entrant lines

3

Config. %eerror o il NDP FBFS LBFS FIFO
Ave, 0 0 0.09301 0 2.906683 0
Configl Min. 0 0 0.016866 0 1.419307 0
Max. 0 0 0.173766 0 5651860 0
Avg. 1.186665 1.179550 0.820087 2.088194 2.865571 2.088194
Config2 Min. 0.000206 0.000206 0.003095 0.002057 0.000411 0.002057
Max. 4.679478 4679478 4.886354 6.013643 10.944309 6.013643
Avg. 0.532486 0.587982 0.714999 0.593519 1.322035 0.593519
Config3 Min. 0 0 0.000104 0 0 0
Max. 3.078559 3.951328 3.523133 4298884 9.824424 4298884
Avg. 0.467542 0.467542 0.525297 0.802350 2.657095 0.802350
Configd Min. 0 0 0.065391 0 0.308027 0
Max. 2.506137 2.506137 1.908183 2.831750 14.249711 2.831750
Avg. 1.282840 1.258623 0.723601 3.043938 4621490 3.043938
Config5s Min. 0 0 0.003318 0.095917 0.822142 0.095917
Max. 4288475 4288475 2.617387 8.457638 14.164897 8.457638
Avg. 0.882617 0.856900 0.727640 2.783108 1.751215 2.783108
Configé Min. 0 0 0.000625 0.099751 0.000172 0.099751
Max. 4288628 4025460 3.502581 8.869749 5.477629 8.869749
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where n=180 and D, is the difference of the percent error
of the i—th paired observation. By the Central Limit The-
orem [7], D has a normal distribution with unknown vari-
ance. Then, we can perform the ¢—test [7] with 179 degrees
of freedom by establishing the hypothesis set

Hy:pp=0, Hy:pup=0 ®)
The test statistic £ is defined as

vnD

Sp

t= (6)

Since D = 0.000259 and s, = 0.149634, by Equation (6),
t = 0.023195 < tyg005.179 = 3-346. This result shows that
the hypothesis A, cannot be accepted with a confidence level
higher than 99.99% and manifests that there is no significant
difference between two suggested algorithms, at least for the
considered configurations.

5. Conclusions

In this paper, we suggested a genetic approach for the
capacitated re-entrant line scheduling problem. The structure
of a chromosome is defined by considering all possible states
of the system in terms of buffer levels of workstations and
a preferred job stage is assigned to each component of the
chromosome. The performance of the proposed algorithm is
evaluated through a numerical experiment, showing that the
suggested approach holds considerable promise for providing
effective and computationally efficient approximations to the
optimal scheduling policy that consistently outperforms the
typically employed heuristics. Our future work intends to
promote further development on the extension of the devel-
oped results to production systems more general than the
CRL.
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