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1. Introduction

After the introduction of the just-in-time concept in manu-
facturing, there has been vast interest in machine scheduling
with earliness-tardiness penalties. The just-in-time manu-
facturing is based on the fact that jobs completed early must
be held in finished goods inventory until their due date, while
jobs completed late may cause customers to wait. Jobs com-
pleted early or tardy from the due date are penalized in ear-
liness-tardiness scheduling problems, which reflects the pre-
mise of just-in-time manufacturing ; for a survey, see Baker

=

=
.
t @

=g 20084 2@ 27
A A2} kimeb@knu.ac.kr

EETEY 2008 07¢ 17¢

and Scudder [2]. Examples of earliness-tardiness scheduling
are file organization problem, PERT/CPM project, produc-
tion of perishable goods, final assembly production, presen-
ted in Merten and Muller [18], Sidney [20] and Kanet [14].

Earliness-tardiness scheduling problems use various ob-
jectives to measure the goodness of a schedule [2]. General-
ly, there are two main penalty functions : the mean squared
deviation (MSD) and the mean absolute deviation (MAD).
In most practical situations, large deviations from the due
date are highly undesirable, and it might be appropriate to
use squared deviations from the due date as the performance
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measure [9, 11, 19].

Determination of due date in the scheduling problem has
been studied for several decades because of its practical im-
portance, for example, zero inventory philosophy in ad-
vanced manufacturing system, planned order release and re-
source requirement planning [5, 6]. The jobs have to be met
the due date in order to avoid penalty or the loss of custom-
er’s goodwill. Recently, the concept of due date window has
been studied in the earliness/tardiness scheduling problem.
The introduction of due date window is suitable for the real
life situation and the problem with due date window has been
studied much in the literature. As mentioned in Soloman and
Desrosiers [21], the concept of time window has been in-
troduced in vehicle routing and scheduling and this time win-
dow is sometimes called as due date tolerance in scheduling
problem [2]. The applications of time window are business
organizations which work on fixed time schedules, industries
that implement JIT concept still allow for some amount of
inventory, time bucket in an MRP system, factory automation
and production maintenance, presented in Ventura and Weng
[22], Liman et al. [17], Baker and Scudder {2], Cheng and
Gupta [5], respectivelv.

Cheng [4] introduced the MAD problem with tolerance
where jobs are not penalized if they are completed close
enough to the common due date with assumption that at most
one job can avoid penalty.

Dickman et al. [8] modified the algorithm in Cheng [4]
and provided alternative optimal due dates and schedules.
Weng and Ventura [23] and Wilamowsky et al. [24] extended
the MAD problem with tolerance by relaxing the assumption
on the range of tolerance. Ventura and Weng [22] studied
the problem to minimize the MAD of job completion times.
They proposed an algorithm based on Lagrangian relaxation
and two heuristic algorithms. Computational results showed
that the obtained solutions by proposed heuristic algorithms
are near-optimal solutions.

For the MSD problem, pseudo-polynomial time algorithm
was developed by De et al. [6, 7). The algorithm based on
dynamic programming is presented when the earliness and
tardiness are both weighted and unweighted [7]. Kahlbacher
[13] proposed the polynomial time algorithm for generally
powered objection function. Refer [10] for general due date
assignment problems.

When there exists a common due date window, Krdmer
and Lee [15] studied the minimization of weighted earliness
and tardiness. A very simple algorithm to determine the loca-

tion of the due date window was presented. Liman et al.
[17] addressed the problem to minimize the weighted sum
of earliness, tardiness and penalty of due date window
location. An O(nlogn) algorithm was proposed with two spe-
cial cases. The minimization of weighted earliness and wei-
ghted number of tardy jobs was investigated by Liman and
Ramaswamy [16]. Algorithm based on dynamic program-
ming was provided.

Yeung et al. [25] investigated the simple machine schedul-
ing problem to minimize the sum of weighted earliness/tar-
diness, weighted number of early and tardy jobs, common
small due date window location and flow time penalties.
They proposed the dynamic programming algorithm to solve
the problem and several special cases solved in polynomial
time are presented. Recently, researches on due windows for
several machines have been performed with different ob-
jective functions [12, 26].

In this paper, the determination of the optimal common
due date in the MSD problem with tolerance is investigated
since small buffer stocks exist in most companies which
adopted JIT principle [3]. It turned out that the optimal due
date of the MSD problem may not be optimal for the MSD
problem with tolerance. In Section 2, the problem is mathe-
matically formulated. Section 3 presents two linear time algo-
tithms to find the optimal due date of a given schedule and
tolerance : one for the size of tolerance less than half of the
processing time of the shortest job, and the other for arbitrary
size of tolerance. Finally Section 4 summarizes and con-
cludes the paper.

2. The MSD problem with tolerance

There are n jobs (n=2) to be scheduled on a sin-
gle-machine, which share a common due date d with toler-
ance t. The machine is continuously available from time zero
onwards and can process no more than one job at a time.
Each job i (+ =1,2,--
terministic processing time p; and ideally should be com-

-,n) requires an uninterrupted and de-

pleted at a common due date d with tolerance t. An arbitrary
schedule, o, specifies a completion time without job pre-
emption for each job 4. If there is no ambiguity about the
schedule under consideration, C, is used instead of C;(o).
Given a schedule o, o(3) and C denote the " job and the
mean completion time of jobs in o, respectively. Let a be

the mean completion time without considering the com-



BT 27| P& JHK= MSD EMAIMY BI) #F 3

pletion time of job 1, i.., a:(ZCj—C’i)/(n—l). A job
j=1

is said to be covered at dif its completion time belongs to
the interval [d—¢, d+¢].

The earliness and tardiness of job i are denoted by
E; and T} respectively and are defined by E =max{0,
d— C;}and 7, =max{0, C;~d}. For schedule o and a
common due date d, we let MSD(d) be the mean squared
deviation, and let ASD,(d) be the mean squared deviation
without penalizing job i. Note that n is constant. Thus, un-

n

less otherwise specified, MSD(d) means »,(C,~d)? =,

i=1 i=1
(E*+ T;?) throughout this paper. Likewise, MSD,(d)= MSD
(d)—(C,—d)*. And here, MSD,(d) is the mean squared de-
viation when a job i is covered at d. Therefore, the total
penalty of schedule o is measured by f(d, o), defined as

n

fldo) =Y (B2U(E) + TRU(T,)), where U is a unit step

i=1

function such that

0 if <t
Ulz t)_{l if x>t

Namely, a job is penalized by the square of the difference
between its completion time and the common due date unless
its completion time belongs to the interval [d—t, d+1¢],
which is called the due window as in Liman et al. (1996).
For the optimal due date d", [d"—t, d" +¢] is said to be
the optimal due window. The objective in this paper is to
determine the optimal common due date d° which minimizes
the objective function f for any given schedule and tolerance.
It is easily observed that no optimal schedule permits idle
time between the execution of the jobs, and then we assume
that any given schedule permits no idle time from the first
job to the last job processed.

3. The optimal due date

Bagchi et al. {1] have shown that for a given schedule,
the optimal due date is a point, which is a mean completion
time of the schedule.

Lemma 1 : (Bagchi, Sullivan and Chang [1]) For a given
schedule, MSD(d) is minimized at d= C.

The following example shows that in general Lemma 1
does not hold in the MSD problem with tolerance. That is,
the optimal due date of the MSD problem may not be optimal
for the MSD problem with tolerance. The example is quoted
from Wilamowsky et al. [24], problem #5 in <Table I>.
Consider the 10-job problem with the processing times 19,
18, 16, 13, 10, 9, 8, 5, 2, 1. The optimal schedule of the
MSD problem is o, =(1,3,4,6,9,10,8,7,5,2) with the
optimal due date d’ =60.0. With ¢=1.875, the optimal due
date for schedule o, is 60.125 and f(60.125, ¢,) = 4862.875,

as shown in <Figure 1>.

A o

MSD

(60.125, )

- * =60 d
C,= 60.125

<Figure 1> Schedule o,

In the MAD problem with tolerance, the optimal due win-
dow always covers as many jobs as possible [23]. In general,
this fact does not hold for the MSD problem with tolerance,
as illustrated in the following example.

Consider a set of jobs with p,; =3,p,=2,p; =1 and
t=0.5. For schedule 0=(1,3,2), we have f(3.5, ) =6.25
as shown in <Figure 2>, But the optimal due date for the
MSD problem with tolerance is 4.5 such that f(4.5, o) =4.5
as shown in <Figure 3>. Note that due window [3, 4] in
<Figure 2> covers two jobs, which is the maximum number
of jobs that can be covered, while due window [4, 5] in
<Figure 3> covers only one job. This implies that the optimal
due date cannot be determined simply by covering as many
jobs as possible such as in the MAD problem with tolerance.

d=351350)=625

<Figure 2> d covers ¢ and G,
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d*=C,=45,f(450)=45

I
3 1 2

<Figure 3> d covers C;

3.1 When tolerance is small

We start with the special case that the size of tolerance
is less than half of the processing time of the shortest job,
which is the assumption taken in Cheng [4] and Dickman
et al. {8] for the MAD problem with tolerance, so that at
most one job can avoid penalty. In this case, the optimal
due date can be obtained much faster than that of the general
case.

L —min, p;, and let (i) be the job such

Theorem 1 : Let ¢t < 5

that a(i)E{k:mlicn|Ck—5|}. Suppose that

there is 1o job covered at d= C. Then, the op-
timal due date is as follows.

(i) if G,y < C, thend

{d min(MSD(C), MSD,(C,a +t)}or
(i) if C,iy> C, then d’

&{d: min(MSD(C), MSD,;(Cpiy—t) }

Proof : For G,y < d < C,(;)+t, job (i) is not penalized
and the objective funct1on is MSD,;(d). In this in-
terval [C,qy Gy +t]s MSD,;(d) is strictly de-
creasing since C, ;) +t< C< C Coiy- For Coiuy

< d < C,;4q) the objective function is MSDU(HI)

(d) and it is strictly increasing since C,;. ) <C

< Cypany—t. Since C—(Cyy+1t) < (Coiuny—t)

— C by the way we select job o(3), it is clear that

MSD(Cyy +t) < MSD(C,;11)—t). Therefore,

‘MSD( w0 T = (Co— (G +1))?
MSD(CL71+1 t)_(CU(i+1)_(Co'(i+l)—t))2

= MSD,;)(Cyisp—1t)-

[:2

When C (&) <d< C +t and C(l+1)“‘tﬁ d< Co(z‘+1)7

the objective function is minimized at d= C,)+t. For
C(i)+t <d< Ca(i+1

a

y—t, no job is covered and the ob-
jective function is MSIXd), which has a minimum at C by
Lemma 1. Now, we obtain that d" & {d : min(2SD(C),
MSD,;(C,y+1t))} as the required. This proves (i). The
proof of (i) is similar to that of (i).

c o(i}

Ol

o(i)
c

of(i+1)

10]

<Figure 4> The case when C,;, <C

5 “MSD .
= ~ -
T~ o MSD«(M)
MSD_..
- »-,r-_.[.,.g—-—'p""’
/,’ g
1 | d
Cogion T c T Co
Cop ¥t Coirnt

<Figure 5> The MSD when ¢, <C

Lemma 2 : Let t and o(i) be as stated in Theorem 1.
Suppose that job o(i) is covered by d= C.
Then we have C,;_ ) < C,(;n< Coiqyy-

Proof : Let z = Zy_ Ca(i) and y= Ba(z) _Zy Then

_ X
V= Tam) Note that

Coiny < C —t= G =

T

C+t<0¢7 (i+1) (1)

Equation (1) implies that —¢ < z < ¢. Thus, this proof
will be done only by checking the signs of (y—¢) and
(y+1).

Now, we consider :

(casel) if z=0, then y=0,
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(case2) if 0<z <t then O<y<t,; 7> and <Figure 8>). It is always true that MSD,
(case3) if —t<z<0, then —t<y<0 (d) <= MSD(d) with equality if and only if d =

C,)> so that the optimal due date is C,(;)+1.
In any cases, we know that y —¢=0 and y +¢ = 0, that

is, C—t< C, n=s C+t. Thus, by equation (1), we obtain C 6
o)
Coi-1) < Co) < Cyi41), completing the proof. [] f"‘l
C o)) | o(i+1)
X :
<> |
d"=Cyyy*t
<Figure 7> Schedule of Case 1
Cc(ﬁ
y L
C. a
°0 2 MSD
<Figure 6> The case when job () is covered and .o /
Co'(i) < —5' -----
. \ MSD,,
Theorem 2 : Let ¢ and o(i) be as stated in Theorem 1. ~_ e
Suppose that job (i) is covered at d= C.
Then, the optimal due date is as follows.
(6) & =7C, if interval [T, —t, C,q +t]covers job
. — d
0(2) ’ _ C Coy*t Cyp
(i) d = C,;+tif interval [ Copn—t C’a(i)+t] does not
cover jOb o(i) and C, < C, and <Figure 8> The MSD of Case 1

(i5) & =C,—t if interval [T, —t, C,+t]does
not cover job o(s) and g > C. Case 2 : This is the case when interval [T, —t, C,p) +1]
covers job o(i+1) in the schedule. By Lemma 2,

C y < Co - It 1s easy to observe that Cc< Cys

+t <Cuay—t < Cyp). For Osdsc;(,.)ﬂ,theob-

Proof : If interval [T, —t, C,pp+t] covers job o(i), it

is not penalized and MSD,((d) is minimized at

—éa(z‘) by Property 1. This proves (i) jective functlon is MSDa(i)(d) and it is strictly de-

creasing since d < Z’U(i). For C i+t <d< Cyyyy

To prove (ii), we consider the following two cases. —t, the objective function is MSD(d) and it is
Likewise, the proof of (iii) can be done analogously, omit- strictly increasing since C < d. Finally, for Cy.y
ting here. —t<d< Cy.y, the objective function is MSD

o+ {d) and it is strictly increasing since C 4y
Case 1 : This is the case when job o(i+1) is not covered < € <d. So, the optimal due date is C(z +¢ or
at d = O, thatis, C,4q) > Cui e It is easy Coisn—t. Since |C=(Cyy+8)| < C—(Coisn—
to see that C < Coptt< Cop. For C<d< Cyp —t)l, MSD(C, ;) +1t) <MSD(Cy; 1y —t) and hence
+t, the objective function is MSD,;(d) and it is
strictly decreasing since d < C . For C,;)+t<d MSD,( Co 1)
< C,» the objective function is MSD(d) and it =MSD(Coiy + )~ (Cp = (G +1))”

_ _ 1Y _ _ 2
is strictly increasing since C < d (refer to <Figure < MSD(Cyiv =) = (G~ (Corn — 1))
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= MSDa(i+1)<Ca(i+1) —t),

as depicted in <Figure 9> and <Figure 10>. Therefore,
we obtain that d' = C ) +t. [

C Cs

ves o(i)

c

cs(i)"’.t

<Figure 9> Schedule of Case 2

MSD

MSD

o{i+1)

MSD

=" o(i)

i
I
co(i*ﬂ) C TTCc(i)

C,n*tt C -1

(i) o(i+1)

<Figure 10> The MSD of Case 2

Now, we describe an algorithm to decide the optimal due
date when the size of tolerance is less than half of the proc-
essing time of the shortest job. The correctness of the algo-
rithm immediately follows from Theorem 1 and Theorem 2.

<Algorithm 1> Finding an Optimal Due Date When the
Size of Tolerance is Small

. 1
Input * Schedule o of n jobs and tolerance t <—-min,p;

2

Output : Optimal due date for schedule o

Begin {Computatién}
Calculate C';
Let o{i) be the job such that a(i)E{k : mlén|6}6—2'_l} ;

Find G, ;) and calculate C,;,
If there is no job covered by [Z‘—t, _C-i-t] then
begin

{Determine the optimal due date based on Theorem 2.}
if (G < O) then
if (MSD(C)<MSD, (G, +t))
then d :=C;
else d = Q)+t
end if
else
if (MSD(C)< MSD,(,(Cy—t))

(4

then d = C;
else d ==C;)—
end if
end if
end
else

{There exists a job covered at d= C, that is, job o(3).
Determine the optimal due date based on Theorem 2.}
begin

If C, covers oi) then d = C,;

else if C) < Cpp—t

then d :=C,,+t

else d :=E‘a(i)~

end if
end.

Output d'
End {Computation}

It is clear that the time complexity of Algorithm 1 is
in On).

replacing the step of calculating function values stated in

We may refine Algorithm | more efficiently by

Theorem 1 by the following step :
A function MSD(d) can be rewritten as

MSD(d) =nl{d— O +0 (2)

where y0=Y,(C, — C)% Similarly, MSD,(d) can be repre-

i=1
sented as
MSD,;(d)

= MSD(d) = (C, ;—d)* &)

Using Equation (2) and Equation (3), we have

MSD(C)— MSD,( C,py +1)

{MSD o (i) + t) }

{ Cop+t—C) +y0—£2}
(C JHt—C) +¢ )

Straight forward, we get
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MSD(C) — MSD,;,(C,y—1t) (5)
=“n(00(i) —t_6)2 +t2

Therefore, an optimal due date can be readily determined
only verifying the sign of Equation (4) or Equation (5).

3.2 When tolerance is arbitrary

In this subsection, we consider the problem determining
the optimal due date when the size of tolerance is arbitrary
(general case). For schedule &, let 7be a set of consecutive
jobs. Then C; denotes the mean completion time without

considering the completion times of jobs in 7, ie., C, =
(Ec; —Zq)/(n— I 711), where || 7Il is the number of
i=1 el

jobs in Z Without loss of generality, we let MSD,(d) be
the mean square deviation without penalizing jobs in 7 ie.,
MSD/(d) = MSD(d) - Y (C,—d)?, where d—t< C <

€7
d+t for all i€ and (G, <d—t or C;,>d+t) for all
1€ L

Theorem 3 : For schedule o, let 7be a set of consecutive
jobs in o. If the optimal due window covers
exactly set 7 then the MSD is minimized at

G+t C—t, or C,, where i and j are the first

and the last covered job in o.

Proof : To cover set 7, the optimal due date should be inside
[C}—t, C;+t]. In this interval, the objective func-

tion is MSD,(d) which is minimized at C,. If
C; < C;—t, the MSD is minimized at d= C;—¢. If
C, > C,+t, the MSD is minimized at d=C;+t.

e Tt i

Otherwise, the MSD is minimized at E, Each case

is shown in <Figure 11>.

In the following, we present an algorithm finding the opti-
mal due date for an arbitrary schedule o and an arbitrary
size of tolerance ¢. Starting from the left-end of schedule
o, the algorithm slides the due window to the right side to
find all possible sets of covered jobs. For each set of covered
jobs 7 it finds a due date that covers / and minimizes the
MSD based on Theorem 3. Among such due dates, it finally
decides the optimal due date. In the algorithm, 4 and j denote
the i" and the ;" jobs in schedule o, respectively. The varia-
ble d" keeps track of the current optimal due date.

<Algorithm 2> Finding an Optimal Due Date when the
Size of Tolerance is Arbitrary

Input : Schedule o of n jobs and tolerance ¢.
Output : Optimal due date for schedule o.

Begin {Computation}
if ¢ is small, use Algorithm 1
else
I:=@;
d=0C=C;
i =1
J=0
while (] <nandi<n) do
begin
{Determine next set of covered jobs.}
if (j<n and Cipi £ C}+2t) then
J=1+1
else
1=i+1
end if
Update C; and penalty function AMSD,()

if (i<3)

i
- 1
Cf‘t C, Cﬁ't E

a)Crt <C < C#

) C, > G+t

<Figure 11> Three cases of the optimal due date covering set 7



begin
{Determine an candidate due date based on Theorem 3
if C,+t< Cj then

d:=C;+t

else if C;—t= E, then
d=C;—t

else
d:= EI;

end if

{Update optimal due date.}
if (f(d,0)< f(d*,a) then

d=d
end if
end
end if
end
Output d

End {Computation}

In <Algorithm 2>, for each execution of the loop, one
job is added into set 7 or deleted from set 7 When a job

¢ is added into set [ new value of 5, is calculated as
C=(Cfn—111)=C)/(n =1 11-1).
Since MSD/(d) is of the form

MSD/(d)= (n— I 11 )(d—C)° +y0,
W0 =3 =2 (n— Il 11 )% C2,
i=1

el

updating C, and MSD,() can be done in constant time. The

maximum number of possible covered sets 7 is 2n and hence
<Algorithm 2> runs in linear time.

4. Conclusions

In this paper, a methodology to determine the optimal
common due date in the MSD problem with tolerance is pre-
sented for the first time. Two linear time algorithms to find
the optimal due date of a given schedule and tolerance have
been presented : one for the size of tolerance less than half
of the processing time of the shortest job, and the other for
the arbitrary size of tolerance.

Further research on the MSD problem with tolerance may
be to develop an algorithm to find the optimal schedule for

the MSD problem with tolerance. When the methodology
to assign the due date is developed, the next step is to find
optimal sequence. The optimal schedule for the MSD prob-
lem may not be the optimal schedule for the MSD problem
with tolerance. The following example shows this fact.

Again consider the example in Section 3, which is the
10-job problem with the processing times 19, 18, 16, 13,
10, 9, 8, 5, 2, 1. The optimal schedule of the MSD problem
is oy = (1, 3,4,6,9, 10, 8 7, 5, 2) with the optimal due
date d° = 60.0. With ¢ =1.875, the optimal due date for
schedule o, is 60.125 and f(60.125, o,) = 4862.875. But for
schedule o, = (1, 3, 4, 7, 9, 10, 8, 6, 5, 2), the optimal
due date is 59.875 and f(59.875,0,) =4860.875 (refer to
<Figure 1>). So schedule o, cannot be the optimal schedule
for the MSD problem with tolerance ¢, as shown in <Figure
12>,

MSR_

_____ P

£(59.875, 5,)
= 4860.875

! | »
1 >

- - d
C,=59.875 C,=60.125

{Figure 12> Schedules o, and o,
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