참고문헌
- Ailor, E., N. Takahashi, Y. Tsukamoto, K. Masuda, B. A. Rahman, D. L. Jarvis, Y. C. Lee, and M. J. Betenbaugh. 2000. N-Glycan patterns of human transferrin produced in Trichoplusia ni insect cells: Effects of mammalian galactosyltransferase. Glycobiology 10: 837-847 https://doi.org/10.1093/glycob/10.8.837
- Anumula, K. R. 1995. Rapid quantitative determination of sialic acids in glycoproteins by high-performance liquid chromatography with a sensitive fluorescence detection. Anal. Biochem. 230: 24-30 https://doi.org/10.1006/abio.1995.1432
- Chang, K. H., K. S. Kim, and J. H. Kim. 1999. N-Acetylcysteine increases the biosynthesis of recombinant EPO in apoptotic Chinese hamster ovary cells. Free Radic. Res. 30: 85-91 https://doi.org/10.1080/10715769900300091
- Choi, O., N. Tomiya, J. H. Kim, J. M. Slavicek, M. J. Betenbaugh, and Y. C. Lee. 2003. N-Glycan structures of human transferrin produced by Lymantria dispar (gypsy moth) cells using the LdMNPV expression system. Glycobiology 13: 539-548 https://doi.org/10.1093/glycob/cwg071
- Chung, B. S., Y. T. Jeong, K. H. Chang, J. Kim, and J. H. Kim. 2001. Effect of sodium butyrate on glycosylation of recombinant erythropoietin. J. Microbiol. Biotechnol. 11: 1087-1092
- Cockett, M. I., C. R. Bebbington, and G. T. Yarranton. 1990. High level expression of tissue inhibitor of metalloproteinases in Chinese hamster ovary cells using glutamine synthetase gene amplification. Bio/Technology 8: 662-667 https://doi.org/10.1038/nbt0790-662
- Conradt, H. S., M. Nimtz, K. E. Dittmar, W. Lindenmaier, J. Hoppe, and H. Hauser. 1989. Expression of human interleukin-2 in recombinant baby hamster kidney, Ltk-, and Chinese hamster ovary cells. Structure of O-linked carbohydrate chains and their location within the polypeptide. J. Biol. Chem. 264: 17368-17373
- Dordal, M. S., F. F. Wang, and E. Goldwasser. 1985. The role of carbohydrate in erythropoietin action. Endocrinology 116: 2293-2299 https://doi.org/10.1210/endo-116-6-2293
- Ferrari, J., J. Gunson, J. Lofgren, L. Krummen, and T. G. Warner. 1998. Chinese hamster ovary cells with constitutively expressed sialidase antisense RNA produce recombinant DNase in batch culture with increased sialic acid. Biotechnol. Bioeng. 60: 589-595 https://doi.org/10.1002/(SICI)1097-0290(19981205)60:5<589::AID-BIT9>3.0.CO;2-K
- Fukuta, K., T. Yokomatsu, R. Abe, M. Asanagi, and T. Makino. 2000. Genetic engineering of CHO cells producing human interferon-gamma by transfection of sialyltransferases. Glycoconj. J. 17: 895-904 https://doi.org/10.1023/A:1010977431061
- Gu, X. and D. I. Wang. 1998. Improvement of interferongamma sialylation in Chinese hamster ovary cell culture by feeding of N-acetylmannosamine. Biotechnol. Bioeng. 58: 642-648 https://doi.org/10.1002/(SICI)1097-0290(19980620)58:6<642::AID-BIT10>3.0.CO;2-9
- Jenkins, N. and E. M. Curling. 1994. Glycosylation of recombinant proteins: Problems and prospects. Enzyme Microb. Technol. 16: 354-364 https://doi.org/10.1016/0141-0229(94)90149-X
- Joziasse, D. H., W. E. Schiphorst, D. H. Van den Eijnden, J. A. Van Kuik, H. Van Halbeek, and J. F. Vliegenthart. 1987. Branch specificity of bovine colostrum CMP-sialic acid: Gal beta 14GlcNAc-R alpha 26-sialyltransferase. Sialylation of bi-, tri-, and tetraantennary oligosaccharides and glycopeptides of the Nacetyllactosamine type. J. Biol. Chem. 262: 2025-2033
- Kim, N. S. and G. M. Lee. 2000. Overexpression of bcl-2 inhibits sodium butyrate-induced apoptosis in Chinese hamster ovary cells resulting in enhanced humanized antibody production. Biotechnol. Bioeng. 71: 184-193 https://doi.org/10.1002/1097-0290(2000)71:3<184::AID-BIT1008>3.0.CO;2-W
- Kitagawa, H. and J. C. Paulson. 1993. Cloning and expression of human Gal beta 1,3(4)GlcNAc alpha 2,3-sialyltransferase. Biochem. Biophys. Res. Commun. 194: 375-382 https://doi.org/10.1006/bbrc.1993.1830
- Kornfeld, R. and S. Kornfeld. 1985. Assembly of asparaginelinked oligosaccharides. Annu. Rev. Biochem. 54: 631-664 https://doi.org/10.1146/annurev.bi.54.070185.003215
- Laubach, V. E., E. P. Garvey, and P. A. Sherman. 1996. Highlevel expression of human inducible nitric oxide synthase in Chinese hamster ovary cells and characterization of the purified enzyme. Biochem. Biophys. Res. Commun. 218: 802-807 https://doi.org/10.1006/bbrc.1996.0143
- Lawrence, S. M., K. A. Huddleston, N. Tomiya, N. Nguyen, Y. C. Lee, W. F. Vann, T. A. Coleman, and M. J. Betenbaugh. 2001. Cloning and expression of human sialic acid pathway genes to generate CMP-sialic acids in insect cells. Glycoconj. J. 18: 205-213 https://doi.org/10.1023/A:1012452705349
- Masri, K. A., H. E. Appert, and M. N. Fukuda. 1988. Identification of the full-length coding sequence for human galactosyltransferase (beta-N-acetylglucosaminide: Beta 1,4- galactosyltransferase). Biochem. Biophys. Res. Commun. 157: 657-663 https://doi.org/10.1016/S0006-291X(88)80300-0
- Mastrangelo, A. J., J. M. Hardwick, F. Bex, and M. J. Betenbaugh. 2000. Part I. Bcl-2 and Bcl-x(L) limit apoptosis upon infection with alphavirus vectors. Biotechnol. Bioeng. 67: 544-554 https://doi.org/10.1002/(SICI)1097-0290(20000305)67:5<544::AID-BIT5>3.0.CO;2-#
- Nakagawa, H., Y. Kawamura, K. Kato, I. Shimada, Y. Arata, and N. Takahashi. 1995. Identification of neutral and sialyl Nlinked oligosaccharide structures from human serum glycoproteins using three kinds of high-performance liquid chromatography. Anal. Biochem. 226: 130-138 https://doi.org/10.1006/abio.1995.1200
- Nemansky, M., W. E. Schiphorst, and D. H. Van den Eijnden. 1995. Branching and elongation with lactosaminoglycan chains of N-linked oligosaccharides result in a shift toward termination with alpha 23-linked rather than with alpha 26-linked sialic acid residues. FEBS Lett. 363: 280-284 https://doi.org/10.1016/0014-5793(95)00336-8
- Ngantung, F. A., P. G. Miller, F. R. Brushett, G. L. Tang, and D. I. Wang. 2006. RNA interference of sialidase improves glycoprotein sialic acid content consistency. Biotechnol. Bioeng. 95: 106-119 https://doi.org/10.1002/bit.20997
- Oster, T., C. Thioudellet, I. Chevalot, C. Masson, M. Wellman, A. Marc, and G. Siest. 1993. Induction of recombinant human gamma-glutamyl transferase by sodium butyrate in transfected V79 and CHO Chinese hamster cells. Biochem. Biophys. Res. Commun. 193: 406-412 https://doi.org/10.1006/bbrc.1993.1638
- Renard, J. M., R. Spagnoli, C. Mazier, M. F. Salles, and E. Mandine. 1988. Evidence that monoclonal antibody production kinetics is related to the integral of viable cells in batch systems. Biotechnol. Lett. 10: 91-96 https://doi.org/10.1007/BF01024632
- Stephenson, J. R., A. A. Axelrad, D. L. McLeod, and M. M. Shreeve. 1971. Induction of colonies of hemoglobin-synthesizing cells by erythropoietin in vitro. Proc. Natl. Acad. Sci. USA 68: 1542-1546 https://doi.org/10.1073/pnas.68.7.1542
- Takeuchi, M., S. Takasaki, H. Miyazaki, T. Kato, S. Hoshi, N. Kochibe, and A. Kobata. 1988. Comparative study of the asparagine-linked sugar chains of human erythropoietins purified from urine and the culture medium of recombinant Chinese hamster ovary cells. J. Biol. Chem. 263: 3657-3663
- Varki, A. 1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3: 97-130 https://doi.org/10.1093/glycob/3.2.97
- Wang, F. F., C. K. Kung, and E. Goldwasser. 1985. Some chemical properties of human erythropoietin. Endocrinology 116: 2286-2292 https://doi.org/10.1210/endo-116-6-2286
- Warner, T. G. 1999. Enhancing therapeutic glycoprotein production in Chinese hamster ovary cells by metabolic engineering endogenous gene control with antisense DNA and gene targeting. Glycobiology 9: 841-850 https://doi.org/10.1093/glycob/9.9.841
- Weikert, S., D. Papac, J. Briggs, D. Cowfer, S. Tom, M. Gawlitzek, et al. 1999. Engineering Chinese hamster ovary cells to maximize sialic acid content of recombinant glycoproteins. Nat. Biotechnol. 17: 1116-1121 https://doi.org/10.1038/15104
- Weiss, P. and G. Ashwell. 1989. The asialoglycoprotein receptor: Properties and modulation by ligand. Prog. Clin. Biol. Res. 300: 169-184
- Wong, N. S., M. G. Yap, and D. I. Wang. 2006. Enhancing recombinant glycoprotein sialylation through CMP-sialic acid transporter overexpression in Chinese hamster ovary cells. Biotechnol. Bioeng. 93: 1005-1016 https://doi.org/10.1002/bit.20815
- Yamamoto, S., S. Hase, S. Fukuda, O. Sano, and T. Ikenaka. 1989. Structures of the sugar chains of interferon-gamma produced by human myelomonocyte cell line HBL-38. J. Biochem. (Tokyo) 105: 547-555 https://doi.org/10.1093/oxfordjournals.jbchem.a122703
- Zhang, X., S. H. Lok, and O. L. Kon. 1998. Stable expression of human alpha-2,6-sialyltransferase in Chinese hamster ovary cells: Functional consequences for human erythropoietin expression and bioactivity. Biochim. Biophys. Acta 1425: 441-452 https://doi.org/10.1016/S0304-4165(98)00095-6
피인용 문헌
- Engineering mammalian cells in bioprocessing - current achievements and future perspectives vol.55, pp.4, 2008, https://doi.org/10.1042/ba20090363
- An investigation of intracellular glycosylation activities in CHO cells: Effects of nucleotide sugar precursor feeding vol.107, pp.2, 2010, https://doi.org/10.1002/bit.22812
- Sialylation enhancement of CTLA4‐Ig fusion protein in Chinese hamster ovary cells by dexamethasone vol.107, pp.3, 2010, https://doi.org/10.1002/bit.22827
- Profiling of N‐glycosylation gene expression in CHO cell fed‐batch cultures vol.107, pp.3, 2010, https://doi.org/10.1002/bit.22828
- Current state and perspectives on erythropoietin production vol.95, pp.6, 2008, https://doi.org/10.1007/s00253-012-4291-x
- Biological Insights into Therapeutic Protein Modifications throughout Trafficking and Their Biopharmaceutical Applications vol.2013, pp.None, 2008, https://doi.org/10.1155/2013/273086
-
Effect of Mild-Thiol Reducing Agents and
${\alpha}2,3$ -Sialyltransferase Expression on Secretion and Sialylation of Recombinant EPO in CHO Cells vol.23, pp.5, 2008, https://doi.org/10.4014/jmb.1303.03046 - Role of Chinese hamster ovary central carbon metabolism in controlling the quality of secreted biotherapeutic proteins vol.2, pp.1, 2008, https://doi.org/10.4155/pbp.13.65
- Site-specific qualitative and quantitative analysis of the N- and O-glycoforms in recombinant human erythropoietin vol.406, pp.25, 2008, https://doi.org/10.1007/s00216-014-8037-8
- Glycosylation: impact, control and improvement during therapeutic protein production vol.34, pp.4, 2008, https://doi.org/10.3109/07388551.2013.793649
- Optimizing Chinese hamster ovary cell line development via targeted control of N-glycosylation vol.3, pp.7, 2008, https://doi.org/10.4155/pbp.15.25
- Chinese hamster ovary (CHO) host cell engineering to increase sialylation of recombinant therapeutic proteins by modulating sialyltransferase expression vol.31, pp.2, 2008, https://doi.org/10.1002/btpr.2038
- Glycoengineering of Chinese hamster ovary cells for enhanced erythropoietin N‐glycan branching and sialylation vol.112, pp.11, 2015, https://doi.org/10.1002/bit.25650
- Multigene expression in stable CHO cell pools generated with the piggyBac transposon system vol.32, pp.5, 2008, https://doi.org/10.1002/btpr.2319
- α2,6-Sialyltransferase 과발현을 통한 인간형 시알산 부가 hCTLA4-Ig 생산 CHO 세포주 제작 vol.32, pp.3, 2008, https://doi.org/10.7841/ksbbj.2017.32.3.193
- Proteomic analysis of host cell protein dynamics in the supernatant of Fc‐fusion protein‐producing CHO DG44 and DUKX‐B11 cell lines in batch and fed‐batch cultures vol.114, pp.10, 2008, https://doi.org/10.1002/bit.26360
- Enhancing the sialylation of recombinant EPO produced in CHO cells via the inhibition of glycosphingolipid biosynthesis vol.7, pp.None, 2008, https://doi.org/10.1038/s41598-017-13609-4
- Improving Immunotherapy Through Glycodesign vol.9, pp.None, 2008, https://doi.org/10.3389/fimmu.2018.02485
- Glycoengineering in CHO Cells: Advances in Systems Biology vol.13, pp.3, 2008, https://doi.org/10.1002/biot.201700234
- Antibody glycoengineering strategies in mammalian cells vol.115, pp.6, 2018, https://doi.org/10.1002/bit.26567
- Metabolic engineering of CHO cells to prepare glycoproteins vol.2, pp.3, 2008, https://doi.org/10.1042/etls20180056
- Inhibition of poly-LacNAc biosynthesis with release of CMP-Neu5Ac feedback inhibition increases the sialylation of recombinant EPO produced in CHO cells vol.8, pp.None, 2008, https://doi.org/10.1038/s41598-018-25580-9
- Model-Driven Engineering of N-Linked Glycosylation in Chinese Hamster Ovary Cells vol.8, pp.11, 2008, https://doi.org/10.1021/acssynbio.9b00215
- Application of Genetic Engineering in Biotherapeutics Development vol.15, pp.2, 2008, https://doi.org/10.1007/s12247-019-09411-6
- Transfection of glycoprotein encoding mRNA for swift evaluation of N‐glycan engineering strategies vol.36, pp.4, 2008, https://doi.org/10.1002/btpr.2990