Neural Networks-Based Nonlinear Equalizer for Super-RENS Discs

Super-RENS 디스크를 위한 신경망 기반의 비선형 등화기

  • Seo, Man-Jung (School of Electronic Engineering, Soongsil University) ;
  • Im, Sung-Bin (School of Electronic Engineering, Soongsil University)
  • 서만중 (숭실대학교 정보통신전자공학부) ;
  • 임성빈 (숭실대학교 정보통신전자공학부)
  • Published : 2008.12.25

Abstract

Recently, various recording technologies are studied for optical data storage. After standardization of BD (Blu-ray Disc) and HD-DVD (High-Definition Digital Versatile Disc), the industry is looking for a suitable technology for next generation optical data storage. Super-RENS (Super-Resolution Near Field Structure) technique, which is capable of compatibility with other systems, is one of next optical data storage. In this paper, we proposed a neural network-based nonlinear equalizer (NNEQ) for Super-RENS discs. To mitigate the nonlinear ISI (Inter-Symbol Interference), we applied NARX (Nonlinear AutoRegressive eXogenous) which is a kind of neural networks. Its validity is tested with the RF signal samples obtained from a Super-RENS disc. The performance of the proposed equalizer is superior to the one without equalization and that of the Limit-EQ in terms of BER (Bit Error Rate).

최근 들어, 광 기록 저장 시스템을 위한 다양한 기록 방식들이 연구되고 있다. BD (Blu-ray Disc)나 HD-DVD (High-Definition Digital Versatile Disc) 기록 방식의 표준화가 진행된 후에 차세대 광 기록 방식에 대한 관련 업계의 초점이 모아지고 있다. 이러한 차세대 광 기록 저장 시스템 가운데 기술의 호환성이 장점인 Super-RENS (Super-Resolution Near Field Structure) 기술이 유력한 후보 중 하나이다. 본 논문에서는 Super-RENS 디스크를 위한 신경망 기반의 비선형 등화기 (NNEQ)를 제안하였다. 비선형 심볼간 간섭 (Inter-Symbol Interference : ISI)을 제거하기 위해 신경망의 한 종류인 NARX (Nonlinear AutoRegressive eXogenous) 모델을 적용하였다. Super-RENS 디스크로부터 획득한 RF 신호 샘플들을 사용하여 모의실험을 수행한 결과, 제안된 비선형 등화기의 성능은 비트오율 측면에서 등화기가 없는 경우나 기존의 Limit-EQ 보다 우수한 성능을 나타내었다.

Keywords

References

  1. http://www.blu-raydisc.com/en.html
  2. J. Tominaga, T. Nakano, and N. Atoda, "An approach for recording and readout beyond the diffraction limit with an Sb thin film," Appl. Phys. Lett., vol. 73, no. 15, pp. 2078-2080, Oct. 1998 https://doi.org/10.1063/1.122383
  3. T. Nakano, A. Sato, H. Fuji, J. Tominaga, and N. Atoda, "Transmitted signal detection of optical disks with a superresolution near-field structure," Appl. Phys. Lett., vol. 75, no. 2, pp. 151-153, Jul. 1999 https://doi.org/10.1063/1.124302
  4. D. P. Tsai, and W. C. Lin, "Probing the near fields of the super-resolution near-field optical structure," Appl. Phys. Lett., vol. 77, no. 10, pp. 1413-1415, Sep. 2000 https://doi.org/10.1063/1.1290692
  5. T. Kikukawa, T. Nakano, T. Shima, and J. Tominaga, "Rigid bubble pit formation and huge signal enhancement in super-resolution near-field structure disk with platinum-oxide layer," Appl. Phys. Lett., vol. 81, no. 25, pp. 4697-4699, Dec. 2002 https://doi.org/10.1063/1.1529078
  6. 김주호, 황인오, 김현기, 윤두섭, 박인식, "Optical Memory Disc Using Super-resolution Phenomenon of Super-RENS Technology," Optical Society of Korea Annual Meeting 2004, pp. 248-251, Feb. 2004
  7. 서만중, 임성빈, 이재진, "신경망을 이용한 Super-RENS 시스템의 비선형 모델링," 대한전자공학회 논문지, vol. 45, no. 3, pp. 53-60, 2008년 3월
  8. 박강호, 김영주, 박노철, 김수경, 곽금철, "근접장 광 정보저장 기술 동향," Optical Science and Technology, Vol. 9, no. 2, pp. 12-21, Apr. 2005
  9. J. Tominaga, H. Fuji, A. Sato, T. Nakano, and N. Atoda, "The characteristics and potential of super resolution near-field structure," Japanese Journal of Applied Physics, Vol. 39, Part 1, no. 2B, pp. 957-961, Feb. 2000 https://doi.org/10.1143/JJAP.39.957
  10. H. Fuji, J. Tominaga, T. Nakano, N. Atoda, and H. Katayama, Technical Digest of the Joint International Symposium on Optical Memory and Optical Data Storage, pp. TuD29, Jul. 1999
  11. T. Kikukawa, N. Fukuzawa, and T. Kobayashi, "Properties of Super-Resolution Near-Field Structure with Platinum-Oxide Layer in Blu-ray Disc System," Japanese Journal of Applied Physics, Vol. 44, Part 1, no. 5B, pp. 3596-3597, May 2005 https://doi.org/10.1143/JJAP.44.3596
  12. B. Yuhas, and N. Ausari, Neural networks in telecommunication, Kluwer Academic Publisher, 1994
  13. J. B. Gomm, D. L. Yu, and D. Williams, "A new model structure selection method for non-linear systems in neural modelling," UKACC International Conference on Control '96, Vol. 2, no. 427, pp. 752-757, 1996
  14. Hagan, M,T., and M.Menhaj, "Training feed-forward networks with the Marquardt algorithm," IEEE Trans. on Neural Networks, vol. 5, no. 6, pp. 989-993, 1999 https://doi.org/10.1109/72.329697
  15. Dennis, J.E., and R.B. Schnabel, Numerical Methods for Unconstrained Optimization and Nonlinear Equations, Englewood Cliffs, NJ: Prentice-Hall, 1983
  16. Riedmiller, M., and H. Braun, "A direct adaptive method for faster backpropagation learning: The RPROP algorithm," Proceedings of the IEEE International Conference on Neural Networks, 1993
  17. Moller, M.F., "A scaled conjugate gradient algorithm for fast supervised learning," Neural Networks, vol. 6, pp. 525-533, 1993 https://doi.org/10.1016/S0893-6080(05)80056-5
  18. Powell, M.J.D., "Restart procedures for the conjugate gradient method," Mathematical Programming, vol. 12, pp. 241-254, 1977 https://doi.org/10.1007/BF01593790
  19. Battiti, R., "First and second order methods for learning: Between steepest descent and Newton's method," Neural Computation, vol. 4, no. 2, pp. 141-166, 1992 https://doi.org/10.1162/neco.1992.4.2.141
  20. K. Kwak, S. Kim, C. Lee, and K. Song, "New materials for super-resolution disc," SPIE Proceedings, vol. 6620, ODS2007 TuC5, 2007
  21. H. Kobayashi, H. Kuribayashi, Y. Tomita, and S. Ohsawa, "Effects of Limit Equalizer in Blu-ray Disc Format," IEEE Transaction on Consumer Electronics, vol. 49, no. 4, pp. 1141-1147, Nov. 2003 https://doi.org/10.1109/TCE.2003.1261209