초록
분자 도킹 실험은 일반적으로 계산 량이 매우 많아 슈퍼 컴퓨팅 파워를 요구하는 실험이다. 따라서 시간이 많이 소요되기 때문에 일반적으로 CPU가 탑재된 컴퓨터를 여러 대 묶어서 사용하는 분산 환경 혹은 그리드 환경에서 실험을 수행하고 있다. 이와 같은 실험 환경은 시간적, 공간적 제약성이 많아 일반적으로 과학자들이 접근하기가 어렵다. 그래서 근래에는 많은 CPU를 사용하기 보다는 월등히 성능이 높은 GPU를 병렬 화하여 과학 분야에 계산하는 연구가 매우 활발히 이루어지고 있는 추세이다. CUDA는 병렬 GPU 프로그래밍을 가능하게 하는 공개 기술이다. 본 논문에서는 이러한 CUDA 기술을 사용하여 분자 도킹 실험을 할 수 있는 시스템을 제안한다. 또한, 분자 도킹 실험에 있어서 중요한 에너지 최소화 계산을 병렬 화하는 알고리즘을 제안한다. 이와 같은 실험을 검증하기 위해 본 논문에서는 일반적인 CPU에서 분자 도킹 실험 시간과 본 논문에서 제안한 병렬 CPU 기반의 분자 도킹 시간을 비교 분석 하였다.
The molecular docking system needs a large amount of computation and requires super-computing power. Since the experiment requires a large amount of time, the experiment is conducted in the distributed environment or in the grid environment. Recently, researches on using parallel GPU of far higher performance than that of CPU in scientific computing have been very actively conducted. CUDA is an open technique by which a parallel GPU programming is made possible. This study proposes the molecular docking system using CUDA. It also proposes algorithm that parallels energy-minimizing-computation. To verify such experiments, this study conducted a comparative analysis on the time required for experimenting molecular docking in general CPU and the time and performance of the parallel GPU-based molecular docking which is proposed in this study.